
Implementing Partial Persistence in Object-Oriented Languages

Frédéric Pluquet
†
, Stefan Langerman

†
, Antoine Marot

†
, and Roel Wuyts

?

†
Université Libre de Bruxelles

{fpluquet,stefan.langerman,amarot}@ulb.ac.be

?
Imec and KULeuven

roel.wuyts@imec.be

Abstract

A partially persistent data structure is a data structure
which preserves previous versions of itself when it is
modified. General theoretical schemes are known (e.g.
the fat node method) for making any data structure par-
tially persistent. To our knowledge however no general
implementation of these theoretical methods exists to
date. This paper evaluates different methods to achieve
this goal and presents the first working implementation
of partial persistence in the object-oriented language
Java. Our approach is transparent, i.e., it allows any
existing data structures to become persistent without
changing its implementation where all previous solu-
tions require an extensive modification of the code by
hand. This transparent property is important in view of
the large number of algorithmic results that rely on per-
sistence. Our implementation uses aspect-oriented pro-
gramming, a modularization technique which allows us
to instrument the existing code with the needed hooks
for the persistence implementation. The implementa-
tion is then validated by running benchmarks to ana-
lyze both the cost of persistence and of the aspect ori-
ented approach. We also illustrate its applicability by
implementing a random binary search tree and making
it persistent, and then using the resulting structure to
implement a point location data structure in just a few
lines.

1 Introduction

In the algorithm literature, a gap exists between tex-
tual descriptions of algorithms in scientific articles and
their implementation in a programming language. Al-
gorithms are described in english text or (pseudo-)code
and expressed using three kinds of operations: basic op-
erations (such as basic arithmetic, assignment or sim-
ple control-flow), new operations (introduced by the

paper) and external operations (referencing other re-
search). When implementing the algorithm these op-
erations need to be implemented efficiently and easily
in a concrete language. This is easy enough for the ba-
sic operations that are supported directly in almost any
programming language in use today. New operations
are typically described in detail by the author of the
proposed algorithm, and therefore can be implemented
with some more work. But problems can arise with the
external operations because they potentially hide very
complex implementations not explained in the same ar-
ticle (referencing previous articles), thereby posing a
real problem for developers.

An example of a well-understood yet complex algo-
rithm frequently encountered is that of persistence. A
regular data structure is ephemeral, i.e., only the last
state of the data structure is stored and previous values
are lost. On the other hand, a persistent data struc-
ture keeps old values when an update operation is per-
formed. Several flavors of persistence were defined by
Driscoll, Sarnak, Sleator and Tarjan[15]. A structure is
partially persistent if previous versions remain accessible
for queries but not for updates. A fully persistent struc-
ture offers accesses to its previous versions for queries
and updates, where each update operation on a version
of the data structure creates a new branch from this
version for the new version.

Different methods presented by Driscoll et al.[15]
can be used to make ephemeral structures persistent
with only a constant factor slowdown. However, their
most efficient techniques can only be applied in a pointer
model, i.e., when data structures are only composed of a
network of records of bounded size and in-degree. Their
less efficient fat node method can be applied in the RAM
model to obtain partially persistent data structures with

a O(log m)1 slowdown in speed (where m is the number
of updates on the structure). Using the fact that version
numbers are integers between 0 and m, one can use Y-
Fast trees of Willard [33] combined with the dynamic
perfect hashing scheme of Dietzfelbinger et al.[13] to
obtain partially persistent arrays (or persistence in the
RAM model) with a slowdown of O(log log m) in speed.
This result was extended to full persistence by Dietz[12].

Note that all the above results are theoretical, and
to our knowledge, no general and fully transparent
persistent system has been implemented to this day.
By transparent (or non intrusive), we mean that no
modification must be done to the code implementing
an ephemeral structure to transform it into a persistent
one. However, a quick review of the literature reveals
that over 20 papers use persistence as an external
operation [5, 34, 17, 18, 1, 20, 3, 6, 21, 10, 25, 22, 2, 32,
23, 9, 16, 8, 7, 4, 11], notified by the simple sentence
“Make this structure persistent” or “The time and
space bounds can be reduced if persistent structures are
used”. Given that no implementation of a mechanism is
available to make a structure persistent, implementing
either of these more advanced results is very difficult
and time-consuming.

Two partial solutions were previously proposed to
introduce the Driscoll et al. persistence as an external
operation. The first one is the Zhiqing Liu persistent
runtime system [24]. The entire system is persistent
and uses a persistent stack and persistent heap to save
changes. The granularity of changes to be recorded can
be tuned to manage the quantity of recorded data. This
solution is not flexible enough to change a subset of
classes to persistent ones. However, in scientific articles,
it is common that only a subset of all used structures
for algorithms must be made persistent. The second
previously existing solution is the Allen Parrish et al.
persistent template class [27]. A template class Per is
provided by the author. The author admits that the
solution suffers from some problems (e.g. because of
references in C++) and it is not transparent for the
initial program since all variable declarations must be
modified by hand.

On the other side all previous practical attempts to
save previous states in a general and transparent way
lack some of the main advantages of Driscoll et al. ef-
ficient persistence: some papers[28, 29] propose tech-
niques to trace a program, events are logged, but full
snapshots of previous versions are not readily accessible.
Caffeine[19] on the other hand stores previous states as
prolog facts for fast future queries, but the snapshots

1Throughout this article, we write lg 0 = lg 1 = 1 and lg x =
log2 x for x ≥ 2.

are taken by brute force, as a copy of the entire set of
objects to trace.

This paper shows how any ephemeral data struc-
tures in an object-oriented language can become par-
tially persistent (i.e., each state of any object can be
saved and accessed efficiently in time and space) without
modifying the ephemeral program, in a simple, trans-
parent and fine-grained way. To obtain these results we
developed a variant of the fat node method proposed in
[15] to save previous states in the objects themselves,
and tested several data structures optimized for this
task. We use aspect-oriented programming to transpar-
ently include a mechanism for detecting state changes.

Any paper that uses persistence as an external
operation therefore becomes much easier to implement.
We show this by implementing a treap, a random binary
search tree [31] and making it partially persistent in one
line. We use persistent treaps to implement the planar
point location solution from [14] in just a few lines of
code.

The rest of this paper is organized as follows.
Section 2 introduces the fat node method of Driscoll
et al. and discusses some improvements. Section 3
explains how we implement this theoretical method in
an object-oriented language. Section 4 shows how to
use our system to create a data structure for planar
point location using persistent search trees in a few lines
of code. Benchmark results of our implementation are
described in Section 5.

2 The Fat Node Method

2.1 Fat Node Method in the RAM Model. The
fat node method as proposed by Driscoll et al.[15] is used
to transform an ephemeral structure into a partially
persistent structure in which changes of fields occurring
in a node are saved in the node itself without erasing
old values of fields. Although the fat node method
was originally described only for data structures in the
pointer model of computation, we will discuss it in the
more general RAM model of computation to which it
easily generalizes.

In the RAM model of computation, each memory
unit has an address and instructions can be used to
either read or store a value at some address. Each
memory unit is ephemeral by nature, i.e., when an
instruction is used to store a new value at some address,
the previous value is lost forever.

A data structure is composed of a set of memory
units containing the data, along with routines (lists
of instructions in the RAM model) that are used to
perform operations (queries or updates) on the data. In
order to transform such a data structure into a partially
persistent one, we first need to maintain a global version

counter which is incremented every time an operation is
performed on the data structure (note that several basic
instructions could occur when performing an operation).
We then simulate the RAM model by maintaining for
every memory unit an auxiliary structure which records
the values stored at that address after every operation
where it is modified, along with the timestamp (value
of the version counter) for the time at which that value
was stored.

Whenever the original structure performs a store
on an address, if the current version counter is present
in the auxiliary structure, the corresponding value is
updated. Otherwise, a new entry is added in the
auxiliary structure, with the new value and the current
timestamp. Whenever an instruction wants to read a
value from an address at time t, the auxiliary structure
is searched to find the value whose timestamp is the
largest among those less than t. This way, persistent
query operations can be performed at any desired time
in the past. A data structure to maintain the auxiliary
data structure in O(1) time per update and O(log n)
time per search can be developed using standard data
structure techniques. The specific data structure we
use and optimize for those operations is described in
the next subsection.

2.2 An Efficient Structure for States. As de-
scribed above, the auxiliary structure for each memory
address must allow to add a new value with a time-
stamp greater than all previously stored timestamps, to
update the value associated with the most recent time-
stamp, and to search for the value whose timestamp
is the largest among those smaller than a given t. Of
course any dictionary data structure that implements
predecessor queries would do (e.g., any balanced tree,
skip-list, etc.), but since this will be the most heavily
used structure after applying the persistence transfor-
mation, special care has to be taken to make the struc-
ture as efficient as possible while keeping the memory
overhead within reasonable bounds.

The simple structure we describe stores an extensi-
ble array where new elements can be appended at the
end in O(1) time (assuming constant time memory al-
location), and where the number of pointers to follow
and the number of comparisons to be performed during
a search are both bounded by lg m+ 2 in the worst case
where m is the number of elements in the array. The
space used is O(m).

The structure is composed of a linked list of
blg mc + 1 arrays of exponentially decreasing sizes
2blg mc, 2blg mc−1, . . . , 1. Each array stores (value, ver-
sion number) pairs in decreasing order of version num-
ber, and all arrays are completely filled except maybe

(a) 1 element (b) 2 elements (b) 6 elements (b) 8 elements

Figure 1: Structure to save versions of a field.

the frontmost and largest array. The frontmost array
maintains the position of its element with the largest
version number.

When storing the first value in an empty structure
during initialization, an array of size one is created and
the value and version number are stored (Fig.2.2 a).
When a change occurs a second version is generated, an
array of size 2 is created and linked to first array; the
new version is stored along with its version number at
the end of this array (Fig.2.2 b). Further changes fill
the frontmost array from back to front until the array is
full. When the array is full and the next update occurs,
a new array is created whose size is twice that of the
previous array, and is linked to that previous array, and
the next version is stored in the last position of the new
array (see Fig.2.2 c and d). The last version of the
field is stored in the frontmost list and its value can be
retrieved or updated in O(1) time. The insertion of a
new version costs O(1) time as well.

When searching for the entry whose timestamp
is the largest among those smaller than t, the list is
followed until the array containing the sought element
is found. This can be done by comparing t to the first
element of each array until the last array is reached or
an element larger than t is found. If 1 ≤ k ≤ blg mc
pointers are followed, then k comparisons have been
made and the array found is of size 2blg mc−k+1. That
array is then binary searched to find the desired element,
using blg mc − k + 2 further comparisons.

2.3 Snapshots. Initially we had planned to make
persistent objects record all versions of each field, re-
gardless of the specific task at hand, but when imple-
menting this solution we realized that different appli-
cations could need different granularities of versioning
information, and that it is usually not necessary to save
all states all the time. Suppose for example that we
want to implement a balanced tree in the persistent
language. If the application only requires to go back
to previous consistent states of the tree, the interme-

diate state changes during the balancing operations do
not need to be stored. On the other hand, if we want to
use persistence to debug an operation in the same tree,
it could be useful to store all steps. We therefore need
a way for the user to indicate the consistent states in a
system or, in other words, to define the granularity of
the persistence.

The solution we decided to implement allows the
user to explicitly indicate when the states have to be
remembered by taking a snapshot, which can be done
anytime. The result of a snapshot is a picture of the
complete system at the time when it is created. To
the user it is an object that can be used to access
any data at the moment the snapshot was taken. In
our previous example, the user is interested in seeing
consistent states of a tree, would only take snapshots
before or after performing operations on the tree (add,
delete, . . .), while a debugger application would take
snapshots after any change to any tree object.

In practice, when the user takes a snapshot, the
implementation will return an object containing the
global version number, and will increment the global
version number. Then, whenever the value of a field f
is changed, if the version number of the last saved state
of f is equal to the global version number, the value of
the last state can be forgotten and replaced by the new
value. Otherwise, a new state is created with the global
version number as version number.

The global view mechanism is used to browse past
states. At each read of an attribute of a persistent
object the system checks if the global view is activated
or not. If not (the system is at now), the original read
is performed. Otherwise the system looks for, in the
states structure associated to this attribute, the last
value before or at version number joined to the global
view. Using a persistent object in the past is completely
transparent for the user: he chooses a previously taken
snapshot and manipulates objects as he could in the
present. Because we implement partial persistence, a
change in past is not permitted (only querying the
structure is allowed).

3 Implementation

3.1 Possible Choices. The easiest way to use per-
sistence could be to select a language that already per-
sistent. For instance, in a functional language all data
structures are intrinsically persistent [26]. However few
algorithms are developed in a functional model and their
analysis is often difficult. Because most algorithms are
described using imperative models of computation we
restrict our research to this paradigm.

Unfortunately, to our knowledge, no usual impera-
tive language (e.g. C++, Java, . . .) allows to imple-

ment directly the persistence in a transparent way: an
instrumentation of all accesses to given variables must
be performed, without modifying original code. So we
must interfere in the compilation process. We see sev-
eral possible methods to insert a persistence mechanism
in a transparent way for imperative languages: before
the compilation (pre-compilation), after the compilation
(change the bytecode), during the compilation and add
more reflection to languages.

Before the compilation Adding transparent persis-
tence via a pre-compilation would offer the advan-
tage of being able to add the same pre-compiler to
any implementation of the language. However, it
requires to parse the code and extract necessary in-
formation to perform a transformation of the code.
These operations are non-trivial.

After the compilation The manipulation can be also
performed on the bytecode generated by a com-
piler. In that case, any language that can be trans-
formed into the same bytecode could be rendered
persistent. However, manipulating bytecode is also
a complex task and it is not clear how one would
instruct the persistence system on which parts of
the code should be rendered persistent.

During the compilation More generally, one could
interact at any level of the compilation (lexical
analysis, parsing, semantic analysis, generation of
code and optimization of generated code). The
compiler must provide enough flexibility to accept
this kind of interaction (either directly in the source
code if it is open-source or via a plugin mechanism).

Adding more reflection Some solutions exist that
add more reflection and introspection at a high ab-
straction level to instrument accesses to variables in
existing languages. Aspect-Oriented Programming
(AOP) has been developed in this way. Having that
type of mechanisms at hand greatly simplifies the
transparent implementation of persistence.

To develop our solution we selected the widespread
object-oriented imperative programming language Java
with the AspectJ module for the AOP functionalities.
Note that our solution is easily adaptable to any lan-
guage supporting the aspect paradigm (e.g. C++,C#,
Python, Smalltalk), a Smalltalk implementation follow-
ing similar principles was developed in parallel to the
Java system described here.

3.2 Aspect-Oriented Programming. Aspect-
oriented programming (AOP) is a modularization
mechanism that allows a program to be split between

(functional) base code, and so called cross-cutting
behavior that needs to be applied throughout the base
code.

Take for example an application that implements a
number of data structures (vectors, balanced trees, ...).
For helping with debugging, the developers want to keep
a log file that shows whenever elements are deleted from
these data structures. A good solution to implement
this behavior using a non-AOP language would be to
implement a logging facility, and to change the delete
functionality in the data structure implementations to
call this logging facility. An alternative would be to
call the logging facility in the code that uses the data
structures. In both cases however, the logging code that
is only there for the purpose of debugging is added to the
base program (either in the data structures themselves
or in the code that uses the data structures).

Using aspect-oriented programming, the data struc-
tures and the client code are written without taking the
logging code into account. The logging code is imple-
mented in its own module (an aspect), that contains the
logging facility itself as well as expressions that indicate
where this logging facility needs to be called. The base
program and this logging code are then composed by a
so-called weaver, that produces the final program that
does logging. An aspect implements the behavior that
needs to be called, and specifies when the behavior needs
to be called. In our example, we could decide to call the
log functionality as last statement in the implementa-
tion of any delete procedure in any of our data struc-
tures (which corresponds to the first manual solution).
We could also decide to execute the log functionality
after every call to a delete procedure, corresponding to
the second solution.

An aspect language hands a developer a number
of points (join points) in the execution of the program
where code can be called (the advice code), and a lan-
guage to use them. Such language typically supports
quantifiers and wildcard expressions that make it easy
to specify global criteria. In our example, the second
approach needs to express ’After any call to a method
named delete, call the following piece of code: ...’. Ex-
actly what join points are offered depends on the aspect
language. Typically code can be executed before, after
or around the execution of behavior (calling a function,
constructing an object, etc.). Aspect languages also of-
fer support to add elements to existing code (e.g., meth-
ods, fields, interfaces, if AOP extends OOP).

3.3 Java Specific Implementation Details. In
order to implement persistence we must map each field
of the object to an instance of our states structure
containing the different values of this field. Fields in

Java are statically typed, that is, their type can not
be modified during the execution of a program. Thus
a states structure can not be stored directly in place
of those fields. Furthermore AspectJ only provides the
names of the fields accessed. Because of this, we have
to create a dictionary in each object for mapping the
field name to the structure storing its states (named
fieldsAndStates in previous codes). When a field
in a persistent object is accessed, a lookup in the
corresponding dictionary is performed.

3.4 Transparent Persistence with AspectJ. Our
implementation uses the aspect-oriented AspectJ sys-
tem to add persistence to existing Java programs with-
out having to change these programs.

In order to use AspectJ to make classes persistent,
the developer writes an aspect declaration. For example,
the following AspectJ code makes all classes in a package
treap persistent (note the wildcard expression treap.*):

declare parents: (treap.*) implements PObject;

Note that other criteria could be used, such as ex-
plicitly enumerating classes or selecting a number of
classes based on their name. Technically, the aspect dec-
laration updates the existing class to add our PObject

interface to it. AspectJ will install all necessary wrap-
pers to classes implementing the PObject interface, adds
an instance variable in these classes, initializes them,
and finally extends classes with some methods to access
old states of fields of instances. Note that this solution
is transparent. The existing structure is made persis-
tent with the aspect declaration, which is not part of
the ephemeral implementation. The rest of the aspect
is used to manage the states:

• Adding a new variable to contain a dictionary in
each persistent object:

public FieldsAndStates PObject.fieldsAndStates

= new FieldsWithStates();

• Declaration of the pointcuts of setters and getters
of persistent objects, but not in the aspects pack-
age:

// declaration of pointcut setters with 1 arg

pointcut setters(PObject t):

// all updates of PObject implementors

set(* PObject+.*)

// not in ’aspects’ package

&& ! within(aspects.*)

// put the target in the variable t

&& target(t);

// same for all read operations

pointcut getters(PObject t): get(* PObject+.*)

&& ! within(aspects.*) && target(t);

• Definition of the advice code after each update of a
field of a persistent object (we ask to save the new
value for the set field):

after(Object newValue, PObject t) :

setters(t) && args(newValue) {

t.fieldsAndStates.addStateWithValueFor(

// the field name:

thisJoinPoint.getSignature().getName(),

// the new value stored in field:

newValue); }

• Definition of the advice code around each read on
a field of a persistent object:

Object around(PObject t) : getters(t) {

if(!Snapshot.globalViewActivated())

return proceed(t); // original read

// retrieve the states of the field

OrderedStates states = t.getStatesFor(

thisJoinPoint.getSignature().getName());

// search the good version of field

// in respect to current snapshot VN

return Snapshot.valueOfStates(states);}

Note that, because to AspectJ limitations, the
arrays can not be made persistent in this way: AspectJ
does not offer a mechanism to instrument accesses to
the elements of an array. However such a feature is
available in the Smalltalk implementation, the reflection
mechanism being more powerful.

4 Planar Point Location and Treaps

Planar point location is a classical problem in compu-
tational geometry: given a subdivision of the plane into
polygonal regions (delimited by n segments), construct
a data structure such that given a point, the region con-
taining it can be reported quickly.

Dobkin and Lipton[14] proposed a solution con-
sisting in subdividing the plane into vertical slabs de-
termined by vertical lines positioned at each vertex.
Within each slab, there exists a total order between line
segments determined by the order in which any vertical
line in the slab intersects them. Each segment is associ-
ated to the polygon just above it, and a balanced binary
search tree storing the segments is constructed for each
slab.

When a point is queried, its x-coordinate is used
to determine which slab contains it in O(log n) time,
and the binary search tree of the corresponding slab

is used to locate the region containing the point, also
in O(log n) time. Unfortunately, the worst-case space
requirement for this structure is Θ(n2). To solve this
problem, Sarnak and Tarjan[30] use persistence in order
to reduce the space to O(n). A vertical line sweeps the
plane from x = −∞ to x = +∞, maintaining at every
point the vertical order of the segment in a balanced
binary search tree. The tree is modified every time the
line sweeps over a point, but all previous versions of
the tree are kept, effectively constructing Dobkin and
Lipton’s structure while using a space proportional to
the number of structural changes in the tree.

In order to illustrate how transparent persistence
can simplify the implementation of complex data struc-
tures, we implemented a random treap[31], a random-
ized binary search tree. The system then transforms
automatically this structure into a partially persistent
structure via the persistence aspect.

The following code is placed in a class storing a set
of points. Each point stores its incoming and outgoing
segments. In the construction of the point location
data structure, each point of the set is swept by the
sweepline, its outgoing segments are added in the treap,
the incoming are removed and a snapshot is taken and
stored in the info associated to the point.

private void constructRTreap(){

rtreap = new RandomTreap();

Iterator it = points.iterator();

while(it.hasNext()){

Point point = (Point)it.next();

LinkedInfosPoint info = point.getInfo();

Iterator segmentsIt =

info.incomingSegmentsIterator();

while(segmentsIt.hasNext()){

rtreap.delete((Segment)segmentsIt.next());}

segmentsIt = info.outgoingSegmentsIterator();

while(segmentsIt.hasNext()){

rtreap.put((Segment)segmentsIt.next());}

info.setSnapshot(Snapshot.takeSnapshot());}}

In the location step of a point p, the slab containing
p is determined. The user asks to the system to see the
structure through the snapshot associated to the left
point of the slab. The treap can then be used normally
to locate the point.

public Segment locatePoint(Point p){

Point thePoint = getLastPointBefore(p);

LinkedInfosPoint assoc =

(LinkedInfosPoint) points.get(thePoint);

Snapshot.globalViewOn(assoc.getSnapshot());

return

(Segment)rtreap.searchEqualsOrJustBefore(p);}

0 50000 100000 150000 200000
states

100

110

120

130

140

150

160
Ti

m
e

in
 n

s
to

 s
av

e
on

e
st

at
e With our structure

With growable arrays

Figure 2: Number of insertions vs. average time per
insertion

5 Tests, Experiences and Performance

All tests were made on a Dual 2 GHz PowerPC G5 with
2 Go DDR of memory, using the NetBeans IDE 5.5 with
version 1.5.0 06 of Java and the AspectJ Development
Environment (AJDE) version 1.5.02. The following
parameters were used: -Xms1024m and -Xmx1024m (the
size of stack is exactly of 1 Go) and -Xnoclassgc
(no automatic garbage collector). We disable the
garbage collector to avoid parasite behavior during the
performance tests. A manual garbage collection is
performed before each test to clean the stack.

All experiments follow the same structure. For
n objects, we perform some operation (insert, search,
...) 106 times, accumulate the total time t (using
System.nanoTime()) and we finally calculate the av-
erage time per operation (t/(106n)). Thus we estimate
the average time (in nanoseconds) per operation.

Java is a dynamic language and has many features
to improve its performance (Just In Time compilation,
Hotspot dynamic compilation, ...)3. As we will see, this
will make it challenging to interpret our tests.

5.1 States structure. The first test on states struc-
ture measures the insertion time. We create an empty
instance of states structure and add n states in it (see
Fig. 2). We also show the time taken by a growable
array to perform the same operation. A growable array
begins with an array of one element. At each inser-
tion, if the array is full, a double sized array is cre-
ated, the full array is copied into the new one using
System.arraycopy(...) and the element is inserted
in the first free place in the array. This technique is
similar to the implementation of the Vector class from
the standard Java libraries, but tailored to our needs.

2http://www.netbeans.org, http://java.sun.com,
http://aspectj-netbeans.sourceforge.net

3http://www-128.ibm.com/developerworks/library/j-jtp12214/

10 100 1000 10000 100000
states

100

150

200

250

300

Ti
m

e
in

 n
s

to
 fi

nd
 o

ne
 s

ta
te Growable Arrays

Our structure - 1.5
Our structure - 2.0
Our structure - 1.9
Our structure - 2.1
Our structure - 2.5
Our structure - 3.0

Figure 3: Number of elements in the structure vs.
average time per search

For each structure the time per insertion seems
constant, with peaks at each new allocation (in Java, an
initialization is performed during each array allocation
causing a linear allocation time). This operation is
amortized by next insertions until the next allocation.
The growable array is 1.2 time slower than states
structure.

We next measure search time. We perform a search
for each saved state in a structure containing n states
and compute the average time (see Fig. 3). Results
are shown using different growing factor. All curves
are roughly logarithmic, as expected, but an intriguing
phenomenon occurs: the performance becomes signifi-
cantly worse when using a factor 2. Subsequent analysis
revealed that dereferencing a Java array whose size is a
power of two takes much more time than for most other
array sizes (±200ns vs ±20ns).

As in the previous test we also performed the same
test with growable arrays. The time to find an element
is also logarithmic. Our structure was always more
efficient.

5.2 Persistence aspect. The Java Just In
Time(JIT) compiler is a real challenge for algo-
rithm analysis: a read of a variable takes 40ns when the
compiler is enabled. In the same conditions two reads
take 45ns as total time. The sum of individual times
is thus not equal to the time of combined operations.
On the other hand this property is respected without
enabling the compiler. Therefore we chose to disable
the compiler, in order to collect more coherent data.

We now analyze the performance of our implemen-
tation of persistence in Java. A given number of changes
is performed on an attribute of an object. We separate
the time for each step of the persistence of an update
operation (see Fig. 4):

Original Java It is the time to perform one change in
the native Java program;

http://www.netbeans.org
http://java.sun.com
http://aspectj-netbeans.sourceforge.net
http://www-128.ibm.com/developerworks/library/j-jtp12214/

0 20000 40000 60000 80000 100000
updates

0

1000

2000

3000

4000

5000

6000

Ti
m

e
in

 n
s

to
 p

er
fo

rm
 o

ne
 u

pd
at

e

Original Java (~136ns)
AspectJ (target and getSignature) (~835ns)
AspectJ + lookup in dictionary (~4444ns)
No snapshot (~5065ns)
Snapshot after each update (~5601ns)

Figure 4: Number of updates vs. average time per
update.

AspectJ (target and getSignature) The aspect
adds some new code after each change. It takes
extra time to retrieve the target object of the
change and get the name of affected attribute (in
signature). We measure an overhead of about 6;

AspectJ + lookup in dictionary As explained in
Section 3.3 a dictionary is used to map the name
of the target variable to the states data structure.
The measured overhead is of about 32;

No Snapshot Adding the mechanism described in
Subsection 3.4, without taking a snapshot (all
changes update the value of the last state associ-
ated to the attribute). We measure an overhead of
37;

Snapshot after each update Same as the previous
test but taking a snapshot after each change. The
measured overhead is now 41.

Remark that the cost of AspectJ (to retrieve the affected
attribute name and the target object) followed by
the search in the dictionary induce an overload of 32
compared with the average time to perform a change on
an attribute of a simple object in Java. Saving the state
in the structure takes only between 600ns and 1200ns,
i.e., only 4 to 9 times slower that the original code.
If AspectJ were able to provide a mechanism to put
the states directly in the attributes, much better results
should be achievable.

In a second test (Fig. 5) we analyze the read
a value that was just updated (only the read time
is observed). Here the activation of the global view
(Section 2.3) is important: if the global view v is
activated we are looking for the value of an attribute
in the last saved state before or at version number

v.versionNumber. Otherwise the actual value of the
attribute is returned (no lookup in dictionary is then
performed). We decompose the operation:

Original Java The time of a read in the original Java.
Does not differ much from an update ;

AspectJ (GV not activated) The global view is not
activated. The aspect returns the actual value con-
tained in the attribute. We measure an overhead
of about 5.5;

AspectJ (GV activated: getSignature) The
global view is activated, states of this attribute
must be consulted. As a first step we report the
search of the name of relevant attribute, using the
signature of the read operation given by AspectJ.
We measure an overhead of about 7.7;

AspectJ + lookup in dictionary After the previ-
ous operation the dictionary is consulted to retrieve
the states data structure associated to the target
variable. The measured overhead is of about 35;

No Snapshot The entire mechanism is activated,
without taking a snapshot after the updates. We
measure an overhead of 43;

Snapshot after each update, GV on first VN
The same previous test but taking a snapshot after
each change. The global view is activated and
its version number is the first one of the system:
at each read a search must be performed to find
the first state in the associated states structure of
the target attribute. The curve is logarithmic as
expected.

The general observations made in our previous tests
are confirmed here: the total performance is dominated
by the three first phases.

Two important remarks can be made. Firstly
a drawback of our implementation is that a lookup
in dictionary must be done for each operation on an
attribute (update or read via the global snapshot). The
time of an update followed by read (with the global view
activated) is so the sum of their individual time. We
could not find a better method considering the features
of Java and AspectJ. Secondly in order to interpret the
large overhead of our system, the following must be
taken into consideration :

The compiler is disabled With the compiler en-
abled the analysis can be done less precisely but
we remark that the performance optimizations per-
formed by the compiler reduce considerably this
overhead ;

0 20000 40000 60000 80000 100000
updates and reads

0

2000

4000

6000
Ti

m
e

in
 n

s
to

 p
er

fo
rm

 o
ne

 re
ad

Original Java (~134ns)
AspectJ [GV not activated] (~740ns)
AspectJ [GV activated : getSignature] (~1040ns)
AspectJ + lookup (~4682ns)
No Snapshot (~5800ns)
Snapshot after each update, GV on first VN

Figure 5: Number of updates+reads vs. average time
per read.

Applications We will see in next section that in
real applications, the persistent operations can be
mixed with a large number of regular operations,
making the overhead acceptable.

5.3 Persistent Treaps and Planar Point Loca-
tion. We now test the performance of persistent treaps.
Fig. 6 shows the average time per insertion in a treap
vs. the number of elements in the treap. The same test
is done on non persistent and persistent treaps (without
snapshot and with snapshot after each insertion). The
global view is not activated. An overhead of roughly 2 is
observed for persistent ones. Remark that taking snap-
shot after each insertion does not increase the time by
insertion considerably, due to the fact that the lookup
in the dictionary takes more time that updating the last
state or adding a new state in the states structure.

The second test (Fig. 7) gives the average time
for searching in persistent and non persistent treaps.
As a first result experiments indicate that search in a
non persistent random treap takes time O(lg n). For
persistent treaps several cases of the global view is
considered: disabled (the overhead is about 3.6), global
view on present (the last saved value in the states
structure) and global view at middle of states (if there
are k insertions with snapshots, the global view version
number is the (k/2)th version number generated). The
overhead of two last ones is about 25. Note that the
theoretical expected search time is O(lg n ∗ lg lg n) : the
expected number of states in a treap node is no more
than the logarithm of the size of its subtree. However in
our tests, the dictionary lookup dominates the running
time, explaining the roughly logarithmic curve.

The explanation of these surprising low overheads
(3.6 instead of 5.5 and 25 instead of 43) is the next
one. When an insertion is performed in a persistent
treap the operations are either non persistent ones (e.g.

1 10 100 1000 10000
insertions

0

50000

100000

150000

200000

250000

300000

Ti
m

e
in

 n
s

by
 in

se
rti

on

Non persistent treap
Persistent treap, No snapshot
Persistent treap, Snapshot after each insertion

Figure 6: Insertion in non persistent and persistent
treaps: number of insertions vs. average time per
insertion.

1 10 100 1000 10000
elements in treap

0

100000

200000

300000

Ti
m

e
in

 n
s

to
 p

er
fo

rm
 o

ne
 s

ea
rc

h Non persistent treap
Persistent treap, No global view
Persistent treap, Global view on present
Persistent treap, Global view at middle of states

Figure 7: Search in non persistent and persistent
treaps: number of elements in treap vs. average time
per search.

comparisons or assignments of temporary variables) or
a read in present (the global view is disabled) or a
persistent update. Persistent operations are minority
and do not increase too much the total time. The same
observations can be applied to the search operations. So
the high overheads observed during the aspect tests are
lowered in the case of persistent treaps.

The test for the planar point location was realized as
follow. For each n, number of given points in the plane,
we generate random points and generate a Delaunay tri-
angulation for these points. We run our implementation
of the planar point location using as parameters the set
of points and the segments generated. We measure the
time t to locate n other random points in the plane.
Fig. 8 shows the average time t/n to perform a search.
As expected the curve is nearly logarithmic.

5.4 Size Tests. Now we analyze the space in memory
of our implementation of the persistence in Java.

As first state we take a simple class composed by 1,
2, 3 or 4 Integer fields. The original size is 8 bytes + 16
bytes per field (4 for the pointer and 12 for the Integer
object). Transforming this class to a persistent one the

100 1000 10000
points in the plane

80000

100000

120000

140000

160000

Ti
m

e
in

 n
s

to
 lo

ca
te

 a
 ra

nd
om

 p
oi

nt

Figure 8: Planar Point Location: number of points in
the plane vs. the time to locate a random point

0 50 100 150 200
updates and snapshots

0

2000

4000

6000

8000

10000

12000

14000

16000

Si
ze

 in
 b

yt
es

With one field
With two fields
With three fields
With four fields

Figure 9: Sizes for object with 1, 2, 3 and 4 fields:
number of update followed by snapshot vs. the size
of the object

aspect adds a field containing a optimized Hashtable

instance and some useful informations for AspectJ. The
size grows to 50 + 140 bytes per field, an overhead
about 8.

Fig. 9 shows the total sizes of objects with,
respectively, 1, 2, 3 and 4 fields after updates (of
all fields), each one followed by a snapshot. The
total size grows linearly according vertical steps due
to instantiation of a new array in states structure at
each power of 2. The steps of the stair graphs are not
horizontal because at each change a new state is created
and added in the states structure.

Fig. 10 shows the sizes of ephemeral and persistent
(no snapshot and snapshot after each insertion) treaps.
When no snapshot is taken the observed average over-
head is about 7.5. It grows to 9.5 with snapshots.

6 Conclusions

This paper presents a first fully transparent implemen-
tation of persistence in an object-oriented language.
The performance of our implementation is far from opti-
mal, partly due to the restriction of the language and of
the overhead intrinsic to the aspect-oriented program-
ming system used. There are several ways in which a

0 50 100 150
insertions and snapshots

0

10000

20000

30000

40000

50000

60000

Si
ze

 in
 b

yt
es

Original Treap
Persistent treap, no snapshot
Persistent treap, snapshot after each insertion

Figure 10: Size of non persistent and persistent treaps:
number of insertions followed by snapshot vs. the size
of the treap

more efficient implementation of persistence could be
designed, e.g., by writing precompilers to generate per-
sistent code or by directly modifying the virtual ma-
chine. Nevertheless the approach presented here has the
advantage of being easy to implement in any language
that supports the aspect paradigm (C++, C#, Java,
JavaScript, PHP, Python, Smalltalk and many others).
A Smalltalk version is moreover currently developed in
the Squeak environment.

Several interesting theoretical questions emerge
from our work: is it possible to implement persistence
in a way that would exploit the structure of the data
structure, i.e., if the structure is indeed composed of
nodes of low indegree, could the implementation be au-
tomatically faster? How would we implement garbage
collecting on saved states when a snapshot is deleted?

Acknowledgements
The authors thank Luc Devroye, Raymond Kalimunda and
Pat Morin for helpful discussions.

References

[1] U. A. Acar, G. E. Blelloch, R. Harper, J. L. Vittes, and
S. L. M. Woo. Dynamizing static algorithms, with ap-
plications to dynamic trees and history independence.
In SODA ’04: Proceedings of the fifteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 531–
540, Philadelphia, PA, USA, 2004. Society for Indus-
trial and Applied Mathematics.

[2] P. K. Agarwal. Ray shooting and other applications
of spanning trees with low stabbing number. SIAM J.
Comput., 21(3):540–570, 1992.

[3] P. K. Agarwal, S. Har-Peled, M. Sharir, and Y. Wang.
Hausdorff distance under translation for points and
balls. In SCG ’03: Proceedings of the nineteenth annual
symposium on Computational geometry, pages 282–291,
New York, NY, USA, 2003. ACM Press.

[4] B. Aronov, P. Bose, E. D. Demaine, J. Gudmunds-
son, J. Iacono, S. Langerman, and M. H. M. Smid.
Data structures for halfplane proximity queries and
incremental voronoi diagrams. In Proc. of the 7th
Latin American Symposium on Theoretical Informatics
(LATIN’06), pages 80–92, Valdivia, Chile, 2006.

[5] F. Aurenhammer and O. Schwarzkopf. A simple on-
line randomized incremental algorithm for computing
higher order voronoi diagrams. In SCG ’91: Proceed-
ings of the seventh annual symposium on Computa-
tional geometry, pages 142–151, New York, NY, USA,
1991. ACM Press.

[6] M. Bern. Hidden surface removal for rectangles. In
SCG ’88: Proceedings of the fourth annual symposium
on Computational geometry, pages 183–192, New York,
NY, USA, 1988. ACM Press.

[7] M. Bern, D. Dobkin, D. Eppstein, and R. Grossman.
Visibility with a moving point of view. In SODA ’90:
Proceedings of the first annual ACM-SIAM symposium
on Discrete algorithms, pages 107–117, Philadelphia,
PA, USA, 1990. Society for Industrial and Applied
Mathematics.

[8] P. Bose, M. van Kreveld, A. Maheshwari, P. Morin, and
J. Morrison. Translating a regular grid over a point set.
Comput. Geom. Theory Appl., 25(1-2):21–34, 2003.

[9] S. Cabello, Y. Liu, A. Mantler, and J. Snoeyink.
Testing homotopy for paths in the plane. In SCG
’02: Proceedings of the eighteenth annual symposium
on Computational geometry, pages 160–169, New York,
NY, USA, 2002. ACM Press.

[10] S.-W. Cheng and M.-P. Ng. Isomorphism testing and
display of symmetries in dynamic trees. In SODA ’96:
Proceedings of the seventh annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 202–211, Philadel-
phia, PA, USA, 1996. Society for Industrial and Applied
Mathematics.

[11] E. D. Demaine, J. Iacono, and S. Langerman. Retroac-
tive data structures. In SODA ’04: Proceedings of the
fifteenth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 281–290, Philadelphia, PA, USA, 2004.
Society for Industrial and Applied Mathematics.

[12] P. F. Dietz. Fully persistent arrays (extended array). In
WADS ’89: Proceedings of the Workshop on Algorithms
and Data Structures, pages 67–74, London, UK, 1989.
Springer-Verlag.

[13] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer
Auf Der Heide, H. Rohnert, and R. E. Tarjan. Dynamic
perfect hashing: Upper and lower bounds. SIAM
Journal on Computing, 23(4):738–761, 1994.

[14] D. Dobkin and R. Lipton. Multidimensional searching
problems. SIAM Journal of Computing 5, pages 181–
186, 1976.

[15] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E.
Tarjan. Making data structures persistent. Journal of
Computer and System Sciences, pages 86–124, 1986.

[16] H. Edelsbrunner, J. Harer, A. Mascarenhas, and
V. Pascucci. Time-varying reeb graphs for continu-
ous space-time data. In SCG ’04: Proceedings of the

twentieth annual symposium on Computational geome-
try, pages 366–372, New York, NY, USA, 2004. ACM
Press.

[17] D. Eppstein. Clustering for faster network simplex
pivots. In SODA ’94: Proceedings of the fifth annual
ACM-SIAM symposium on Discrete algorithms, pages
160–166, Philadelphia, PA, USA, 1994. Society for
Industrial and Applied Mathematics.

[18] M. T. Goodrich and R. Tamassia. Dynamic trees and
dynamic point location. In STOC ’91: Proceedings of
the twenty-third annual ACM symposium on Theory of
computing, pages 523–533, New York, NY, USA, 1991.
ACM Press.

[19] Y.-G. Guéhéneuc, R. Douence, and N. Jussien. No
java without caffeine – a tool for dynamic analysis of
java programs. In Proceedings of ASE 2002 : 17th
International IEEE Conference on Automated Software
Engineering, Edinburgh, UK, September 2002.

[20] P. Gupta, R. Janardan, and M. Smid. Efficient algo-
rithms for generalized intersection searching on non-iso-
oriented objects. In SCG ’94: Proceedings of the tenth
annual symposium on Computational geometry, pages
369–378, New York, NY, USA, 1994. ACM Press.

[21] J. Hershberger. Improved output-sensitive snap round-
ing. In SCG ’06: Proceedings of the twenty-second
annual symposium on Computational geometry, pages
357–366, New York, NY, USA, 2006. ACM Press.

[22] P. N. Klein. Multiple-source shortest paths in planar
graphs. In SODA ’05: Proceedings of the sixteenth
annual ACM-SIAM symposium on Discrete algorithms,
pages 146–155, Philadelphia, PA, USA, 2005. Society
for Industrial and Applied Mathematics.

[23] V. Koltun. Segment intersection searching problems in
general settings. In SCG ’01: Proceedings of the seven-
teenth annual symposium on Computational geometry,
pages 197–206, New York, NY, USA, 2001. ACM Press.

[24] Z. Liu. A persistent runtime system using persistent
data structures. In SAC ’96: Proceedings of the 1996
ACM symposium on Applied Computing, pages 429–
436, New York, NY, USA, 1996. ACM Press.

[25] K. Mehlhorn, R. Sundar, and C. Uhrig. Maintaining
dynamic sequences under equality-tests in polylogarith-
mic time. In SODA ’94: Proceedings of the fifth annual
ACM-SIAM symposium on Discrete algorithms, pages
213–222, Philadelphia, PA, USA, 1994. Society for In-
dustrial and Applied Mathematics.

[26] C. Okasaki. Purely functional data structures. Cam-
bridge University Press, New York, NY, USA, 1998.

[27] A. Parrish, B. Dixon, D. Cordes, S. Vrbsky, and
J. Lusth. Implementing persistent data structures
using c++. Softw. Pract. Exper., 28(15):1559–1579,
1998.

[28] S. P. Reiss and M. Renieris. Generating Java trace
data. In Proceedings of the ACM 2000 conference on
Java Grande, pages 71–77. ACM Press, 2000.

[29] S. P. Reiss and M. Renieris. Encoding program execu-
tions. In Proceedings of the 23rd International Confer-
ence on Software Engineering, pages 221–230, Toronto,

Ontario, Canada, 2001. IEEE.
[30] N. Sarnak and R. E. Tarjan. Planar point location us-

ing persistent search trees. Commun. ACM, 29(7):669–
679, 1986.

[31] R. Seidel and C. R. Aragon. Randomized search trees.
Algorithmica, 16(4/5):464–497, 1996.

[32] J. Turek, J. L. Wolf, K. R. Pattipati, and P. S.
Yu. Scheduling parallelizable tasks: putting it all
on the shelf. In SIGMETRICS ’92/PERFORMANCE
’92: Proceedings of the 1992 ACM SIGMETRICS joint
international conference on Measurement and modeling
of computer systems, pages 225–236, New York, NY,
USA, 1992. ACM Press.

[33] D. E. Willard. Log-logarithmic worst-case range
queries are possible in space Θ(N). Inf. Process. Lett.,
17(2):81–84, 1983.

[34] D. M. Yellin. Algorithms for subset testing and finding
maximal sets. In SODA ’92: Proceedings of the third
annual ACM-SIAM symposium on Discrete algorithms,
pages 386–392, Philadelphia, PA, USA, 1992. Society
for Industrial and Applied Mathematics.

	Introduction
	The Fat Node Method
	Fat Node Method in the RAM Model.
	An Efficient Structure for States.
	Snapshots.

	Implementation
	Possible Choices.
	Aspect-Oriented Programming.
	Java Specific Implementation Details.
	Transparent Persistence with AspectJ.

	Planar Point Location and Treaps
	Tests, Experiences and Performance
	States structure.
	Persistence aspect.
	Persistent Treaps and Planar Point Location.
	Size Tests.

	Conclusions

