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Abstract
Object versioning refers to how an application can have
access to previous states of its objects. Implementing this
mechanism is hard because it needs to be efficient in space
and time, and well integrated with the programming lan-
guage. This paper presents HistOOry, an object versioning
system that uses an efficient data structure to store and re-
trieve past states. It needs only three primitives, and exist-
ing code does not need to be modified to be versioned. It
provides fine-grained control over what parts of objects are
versioned and when. It stores all states, past and present, in
memory. Code can be executed in the past of the system and
will see the complete system at that point in time. We have
implemented our model in Smalltalk and used it for three
applications that need versioning: checked postconditions,
stateful execution tracing and a planar point location imple-
mentation. Benchmarks are provided to asses the practical
complexity of our implementation.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Classes and Objects, Data types
and structures; D.3.2 [Language Classifications]: Object-
Oriented Languages

General Terms Algorithms, Design, Experimentation,
Languages, Performance

Keywords Object Versioning, Object-oriented Program-
ming, Language Design
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1. Introduction
In the algorithmic research community, data structures are
called persistent (in the rest of this paper we will use the term
versioned1) if they support access to multiple lifetime ver-
sions of that data structure [Driscoll et al. 1986]. Versioned
data structures make it possible to go back in time and revisit
the state of a data structure at some point in the past. There
are several applications that need such versioning support.
For examples, debuggers and tracers benefit from offering
insight in previous states of objects.

Implementing efficient object versioning is hard because
of the space and time complexity needed to save past states
of potentially all fields of all objects. Furthermore the ver-
sioning mechanism should be properly integrated in the pro-
gramming language. Last but not least, full support for ob-
ject versioning ideally should support the same design prin-
ciples than orthogonal persistence because this has proven
to be useful when dealing with saved object states [Atkinson
1995]:

1. Any object, regardless of its type, can be versioned.

2. The lifetime of all objects is determined by their reacha-
bility.

3. Code cannot distinguish between versioned and non-
versioned data.

This paper presents HistOOry, an in-memory object ver-
sioning system that is general enough to add versioning to
any existing program and that has the following features:

• It supports the design principles outlined above: any ob-
ject can be versioned, unreachable objects are garbage
collected and there is no difference between versioned
and non-versioned objects.

• It has a fine-grained model where certain fields of an ob-
ject can be versioned while other ones are not. Moreover

1 We avoid the word persistent because it has a different meaning in the
object-oriented and database communities, where it is tied to long-lived data
and the suspension and resuming of execution.



the model allows to specify when the state is saved, be-
cause different applications have different requirements.

• Objects can be versioned without the need for changing
the implementations of their class.

• It is efficient. Versioning has a constant cost that does
not increase with the number of objects that have already
been versioned. Querying a past version of the object
graph can be done with a cost that is logarithmic to the
number of saved versions.

• It only requires three primitives, making it easy to learn
and use.

HistOOry saves the versions in memory because we make
the past versions of objects directly available. The reason
is simple: the goal of HistOOry is to reflect on the past of
objects as quickly as possible and not to backup objects on
some physical medium to restore them at some later time.
This leads us to a different solution than the “classical”
database- or file-oriented persistency approaches.

HistOOry is implemented in Squeak/Pharo (a Smalltalk
environment), using efficient structures to keep states (based
on the fat node method of Trajan et al.[Driscoll et al. 1986])
and we have used it to build three applications using object
versioning: we add support for checked postconditions to
Smalltalk, implement an object execution tracer that keeps
track of the states of receiver and arguments, and implement
a planar point location program. Benchmarks for synthetic
cases and for these applications show that the measured
execution time penalty is a factor of 7.3 for a synthetic
worst case example, and a factor of 2.3 in the application
benchmarks.

This paper is the second in our research on adding ef-
ficient object versioning to an existing programming lan-
guage. A first workshop paper [Pluquet et al. 2008] showed
the basic feasibility of the idea and showed that our approach
can be efficient using a first prototype. This paper revisits the
algorithm (optimizing it even more), presents a much faster,
robust and efficient implementation in Smalltalk and shows
how to integrate and use object versioning.

The rest of the paper is structured as follows. Sec. 2
gives examples of applications that use object versioning.
Sec. 3 and Sec. 4 introduce the terminology and the actual
model and implementation of HistOOry. Sec. 5 revisits the
applications and shows how they can be implemented, while
Sec. 6 gives benchmark results. Sec. 7 discusses related
work, while Sec. 8 describes some of the extensions we are
working on. Sec. 9 concludes the paper.

2. Examples of Applications that Use Object
Versioning

A large number of applications currently use object version-
ing, either explicitly or implicitly. They typically use ad-hoc
solutions that rely on copying objects, which require a lot of
effort to implement, are not very efficient, and are prone to

errors. In this section, we present three types of applications
using object versioning: capturing stateful execution traces,
supporting checked postconditions and solving the planar
point location problem. In Sec. 5, we revisit these examples
and show how to build them with HistOOry.

2.1 Capturing Stateful Execution Traces
When reengineering legacy systems, one of the few trustable
sources of information is the execution of the application it-
self [Demeyer et al. 2002]. Approaches exist to capture ex-
ecution traces of programs and query or visualize the traces
to gain understanding of the system [Lange and Nakamura
1997, Hamou-Lhadj and Lethbridge 2004].

What these approaches almost never capture (with the
exception of [Ducasse et al. 2006]) is the state of the receiver
or the arguments at the time the message was sent. With
state information available we could for example find all
messages to a particular object that have side-effects on
a particular variable. Such queries can be expressed quite
easily using for example object querying languages [Wuyts
2001, Willis et al. 2006, Hajiyev et al. 2006] once the state
information is available.

2.2 Checked Postconditions
A postcondition is an assertion (a predicate the developer
believes to be true) that describes the expected state at the
end of some execution [Meyer 1992]. Several languages
have support for checked assertions, assertions that are
checked and that raise exceptions when they are violated.
In object-oriented programming, postconditions can typi-
cally be found at the end of a method. They take the form
of expressions that use the final values of objects used in
a method. For example, a method that has as behaviour to
count the number of elements of an array can have a post-
condition expressing that this number is always positive.

Another example of a postcondition is one that expresses
that the size of a collection grows by one if an element is
added. To check this assertion there is a need to know the
state before the method is being executed and afterwards,
such that the sizes can be compared. The fact that the initial
state of an object needs to be compared with the state at
the end of executing a method holds true for many other
examples as well.

2.3 Planar Point Location
Our previous paper [Pluquet et al. 2008] shows over 20 al-
gorithms, whose implementation would be greatly simplified
by using our object versioning system. For instance, planar
point location is a classical problem in computational geom-
etry: given a subdivision of the plane into polygonal regions
(delimited by n segments), construct a data structure such
that, given a query point, the region containing it can be re-
ported.

There is a solution by Dobkin and Lipton [Dobkin and
Lipton 1976] that answers queries in O(log n) time. It sub-



divides the plane into vertical slabs determined by vertical
lines positioned at each vertex. Unfortunately, the worst-case
space requirement for this structure is Θ(n2).

Another solution, by Sarnak and Tarjan [Sarnak and Tar-
jan 1986] uses persistent (versioned) data structures to re-
duce the space to O(n). A vertical line sweeps the plane
from x = −∞ to x = +∞, maintaining the vertical order of
the segment at every point in a balanced binary search tree.
The tree is modified every time the line sweeps over a point,
but all previous versions of the tree are kept, effectively con-
structing Dobkin and Lipton’s structure while using a space
proportional to the number of structural changes in the tree.

3. Basic Versioning Terminology
Before we introduce HistOOry, we define a number of basic
terms. We define the state of a field as its value. At each
modification of a value, a new state is generated. The state
of an object is the combination of the states of its fields.
We define a history as an ordered collection of states. A
field is either ephemeral, which means that it only retains
its last state and has no memory about its previous states, or
versioned, which means that it can access previous states.

We have defined the state of an object as being the com-
bination from the state of its fields, and not as a first-class
construct in itself. The state of an object at any given time is
the value of its fields at this time. This makes it possible to
have objects that contain versioned and ephemeral fields, a
feature we will use later on in the paper. In the rest of the pa-
per, we speak about versioned fields (and versioned objects,
that have all their fields which are versioned).

The versioning we are discussing in this paper allows one
to save modifications of an object and to browse the modifi-
cations in a read-only mode: a new state can be created only
from a last state. This is comparable to back-up systems like
Mac OS-X Time Machine: it is possible to view previous
versions of files that are included in the back-up, but they
cannot be changed. Two other modes of versioning are stud-
ied in the algorithmic literature: full and confluent [Driscoll
et al. 1986], but we will not discuss them here.

4. The Model of HistOOry
Before we delve into the details of the model that underlies
HistOOry, we give an overview of the goals that drove its
design.

1. Recording and browsing all the available states of any
object in an object oriented system, including arrays and
other kinds of collections. This goal can be subdivided
into two crosscutting concerns:

(a) Fine-grained selection of what to save. The level of
granularity of what to save in HistOOry is the field of
an object. This means that the smallest element that
can become versioned is a single field of a single ob-
ject, even though most applications will choose to ver-

sion more elements (for example all objects and all of
their fields of some classes of interest). We have taken
care of making it easy for the developer to choose
what becomes versioned. As will be discussed later,
we also defined a number of rules to make cohabita-
tion of ephemeral and versioned objects possible.

(b) Fine-grained selection of when to save. Each modifi-
cation of a field of an object generates a new state of
this object. HistOOry provides a simple mechanism to
select which states must be kept.

2. Being efficient. We have based our solution on an ef-
ficient data structure that reduces the time and space
needed to store and retrieve the object history informa-
tion (discussed in Sec. 4.2). It allows us to save the state
in constant time (not dependent on the number of states
previously saved) and retrieve the states of a field with
a time complexity that is logarithmic to the number of
stored states for this field. Besides the theoretical advan-
tages of the particular algorithm we chose, we have also
taken care to implement it in proper object-oriented style.
For example, all states of an object are saved in the ob-
ject itself. If an object is no longer used in the system,
that object and all objects used to save its history will
be garbage collected. As shown in Sec. 6, our implemen-
tation results in a slowdown that never exceeds a factor
of 7.3, regardless of whether we keep a single state or a
hundred thousand states.

3. Ease of use. We wanted to integrate object versioning in
an object-oriented language in such a way that it is easy
to version certain parts of an implementation, as well as
to use the versioning information. In our approach, no
modifications to existing code are necessary to version
objects. Moreover it is only necessary to learn 3 primi-
tives to use HistOOry.

4.1 Recording and Browsing Object States
The first goal of our model is to be general enough to have
the possibility to record any state of any object in any object
oriented system and then browse them.

4.1.1 Snapshots: When to Save Fields
The developer that uses HistOOry to make an application
with versioned objects has full control of when states of
objects are saved.

This is analogous to using a camera. Whenever the user
presses a button, a snapshot is taken, remembering what was
visible at that time, while life goes on. This is in contrast
to a video camera, that saves a constant stream of images.
While the latter can be interesting at times (and can be done
in our approach as well), lots of applications that need object
versioning are better served with explicitly taking snapshots
than with capturing a huge stream of changes.

We can illustrate this with a concrete example. Suppose
that we have an implementation of a balanced tree. While



debugging the tree data structure itself, a developer is in-
terested in seeing all the states the tree goes through while
adding an element, including internal node rotations and
low-level changes in the collections that store the data in the
tree nodes. However, while debugging an application that
uses the tree that developer might only be interested in see-
ing consistent states of the tree (the state of the tree after
element insertions and deletions), without the internal work-
ings of the tree. For the first application, it is necessary to
keep all state changes of all objects making up the tree data
structure. In the second application, we only want to take
snapshots after elements are inserted or deleted.

4.1.2 Selection and Deselection: What Fields to Save
A developer has full control over what gets saved when a
snapshot is taken.

This is analogous to putting a filter on the lens of the
camera. While a camera without a filter will always take
snapshots of the complete scene, lens filters will reduce the
amount of information in a scene and only select items of
interest. Filters can be changed at any time and change the
results of pictures taken after the new filter is installed.

By default HistOOry makes all fields of all objects
ephemeral. In our camera analogy this is comparable with
putting the lens cap on: when you take a snapshot you will
not see anything.

At any given point in time the developer can select what
fields become versioned. This is comparable to replacing the
lens cap with a filter. When a snapshots is taken, it will only
save the states of versioned fields. States of ephemeral fields
are not stored and can therefore not be looked at later on.

It is also possible to make a versioned field ephemeral
again by deselecting it. Deselecting a field means that future
snapshots will not save the state for that field. Old states are
still available but no additional state will be saved: the value
of the last state is overwritten at each update. A deselected
field can be obviously re-selected.

In contrast with systems where all objects are always ver-
sioned, our model gives the developer fine-grained control.
This has a number of advantages. Firstly, the object version-
ing is clearly visible in the code because the developer ex-
plicitly indicates which objects are versioned. Secondly, the
system does not lose time and space to save modifications
of objects that will never be used. Thirdly, this choice means
that the developer still has the possibility of keeping every-
thing.

4.1.3 Browsing States
Previous sections explained how states can be saved by us-
ing selection and snapshots. We illustrate this with a concrete
example. Suppose we are building a library system to model
the borrowing of books. It uses a class Book that has three
fields: title contains a pointer to a string that represents the
title of the book, state contains a pointer to a string describ-
ing the state of the book (“clean” or “dirty”) and borrower
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Figure 1. Pedagogical depiction of taking three snapshots of a
fine-grained selected objects graph
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Figure 2. Browsing the past from the time t4 through the three
snapshots taken in Fig. 1

contains a pointer to a client. A client is described by two
fields: name (a string) and id (an integer). We select only the
fields state and borrower of Book to be versioned. Other
fields remain ephemeral because it is unnecessary in this ap-
plication to keep the older versions of the title of a book or
the name of the user: only the present values of these fields
are available.

Fig. 1 shows the evolution of a particular book instance,
namely the novel ”1984” that will be borrowed by a client
named ”John”. The book and the client are introduced in the
library system between the time t0 and t1. At time t1 the
book is badly titled (“1985”), its state is set to be clean and a
client with name ”Jon” is set to be the current borrower. We
take a snapshot s1 at this time t1.

Sometime later the client comes back to the library to
return the book in a dirty state. He mentions also that his
name is ”John” instead of ”Jon”. A new snapshot s2 is taken
at this time t2.

Three days later the client comes back to borrow the
same book again. During the loan registration, the library
employee corrects the title of the book. A snapshot s3 is
taken at this time t3.

The top part of Fig. 1 shows objects states at each time-
stamp. We have colored the versioned fields in grey, while



the ephemeral ones are white. The second line shows saved
values in each snapshot. Only the values of selected fields
are saved.

Snapshots reify the state of the selected part of a system at
the time the snapshot was taken. Code can then be executed
in the context of the snapshot. That code sees the saved part
of the system exactly like it was when the snapshot was
taken. The objects seen in each of the snapshots from the
time t4 are shown in Fig. 2. When fields are accessed, three
things can happen:

• The field was selected before the creation of the snapshot.
In that case the stored past state is returned. For example,
asking the value of the borrower of the book in the second
snapshot gives NULL.

• The field was selected after the snapshot was created.
This means that we try to access the past state of a
field before it was saved for the first time. We raise an
exception.

• The field was not selected (it is therefore an ephemeral
field) and therefore no past state exists. We return the
present value of the state (all white fields in the figure
have their present value). Sec. 4.3 shows other examples
in which this choice it is very practical.

A modification of a versioned field while executing code
in the context of a snapshot results in an exception being
thrown. A modification of an ephemeral field changes that
field, which is normal because the snapshot actually sees the
present object. Changing the name of the ephemeral user
field either in the present or in the context of a snapshot
would therefore change the present value.

4.2 Being Efficient
Saving multiple states of object graphs and efficiently re-
trieving them requires an advanced data structure. Luckily
several algorithmic results are known for this problem. Af-
ter carefully reviewing the available algorithms, we decided
to implement the fat node method [Driscoll et al. 1986] that
can transform any ephemeral data structure into a partially
versioned one.

In the rest of the section we first outline the fat node
method itself, we then describe the structure that stores the
states and then discuss our implementation.

4.2.1 Fat Node Method
The data structure must remember the states of versioned
fields of objects. A first method could be to simply save all
objects in the system whenever a snapshot is taken. This con-
sumes a lot of space because there is no sharing of common
state across snapshots, but makes it very easy to browse the
states at a certain point in time. Another approach could be
to remember every single update to a field. This approach
reuses states between different snapshots, but makes it very
hard and costly to reconstruct the complete past system in a

aBook::Book
title

borrower
state

client1::Client
name
id

"1984"

"clean"

"John"
1

t3t2t1

t2t1
"dirty"

Figure 3. Internal structure in HistOOry for the example shown
in Fig. 1 at time t4.

consistent way. Moreover, it must keep all past states to re-
main consistent, making it costly when only few snapshots
are taken.

The fat node method in a sense combines the two previ-
ous methods. Like the second method, it keeps all the past
values of a versioned field within that field itself, but like
the first method it only remembers a single value per snap-
shot (and not all the intermediate values that do not belong
to snapshots). Last but not least, it makes it very easy to use
the past in a consistent way.

The key principle is that when a field is marked as ver-
sioned, it remembers its previous values. Instead of having
only a reference to the present value of the field, a reference
to the previously snapshotted values is kept, together with
bookkeeping information that makes it easy to reconstruct
the complete system at a particular point in time.

Fig. 3 shows how this works for the example shown in
Fig. 1 for the time t4. Ephemeral fields are not changed
and therefore directly store references to objects. Versioned
fields on the other hand contain all of the snapshotted values
associated with their time. The figure seems to imply that
the values are stored in a simple table, which is an abstract
view. The actual data structure used to keep and access the
snapshotted values is detailed in Sec. 4.2.2 where we show
how the approach functions.

Two kinds of bookkeeping information are kept. First of
all there is a single global version number that is kept for the
system as a whole. Second, each state (remembered value of
a field) remembers when it was added by keeping a version
number. This works as follows. When updating a versioned
field with a new value v, the version number of the previous
state of this field is considered: if it is equal to the global
version number, the value saved by the state is replaced by
v. If not, a new state with the value v and a version number
equal to the global version number is created. The global
version number is incremented only when the system needs
to save a new global state. Taking a snapshot therefore boils
down to just incrementing the global version number, which
is very cheap.

4.2.2 States Structure
The data structure that actually stores the states of the fields
is composed of chained arrays (see Fig. 4), not a simple
table. Chained arrays offer good performance: new states



(a) 1 element (b) 2 elements (c) 6 elements (d) 8 elements

Figure 4. Structure to save versions of a field.

can be added in O(1) time, the last version can be accessed
in O(1) and the search of a state for a given version number
is bounded by lg m + 2 in the worst case where m is the
number of states in the arrays. Moreover the space used is
O(m).

We observed that consecutive retrievals of the same ver-
sion of an object always have to traverse the chained data
structure. Therefore, we decided to add a cache. The cache
holds a single key-value pair consisting of the last version of
the field retrieved and the corresponding state. Consecutive
retrievals of the same version therefore no longer traverse
the chained arrays but immediately return the object. This
simple cache results in good practical performance because
it is lightweight (only a single value is kept and only a sin-
gle version number is compared) and corresponds to most
practical usage scenarios.

4.2.3 Implementation
To explain how our implementation works, we first show
a small part of the implementation of class Book from the
library system introduced in Sec. 4.1.3, namely the setter and
getter methods for the borrower field (in Smalltalk):

Book>>borrower
”getter method that returns the borrower of a book”
ˆborrower

Book>>borrower: aClient
”setter method that sets the borrower of a book”
borrower := aClient

When the class Book has none of its fields selected for
versioning, it is left untouched. But when we select the field
borrower, HistOOry transparently modifies code that ac-
cesses fields. Accessing a field will defer to the active pro-
cess instead of directly asking the object. Setting a field will
send a HistOOry specific message to the object contained
in the field. The resulting code does the following (we show
later on that this is actually done with bytecode rewriting, not
source rewriting, but it is easier to show the corresponding
source code):

Book>>borrower
”getter method that returns the borrower of a book”
ˆProcessor activeProcess valueOf: #borrower

+valueOf: : Object 
 

PastProcess

0..*
execute in a past context into

valueOf: anObject
  ^snapshot valueOf: anObject

valueOf: anObject
   ^anObject valueBeforeOrAtVersionNumber: versionNumber

#versionNumber: Integer
HSnapshot

+execute:
+valueOf: : Object
+atNow: HSnapshot

+valueOf: : Object
+newValue:forHStates:
+workingVersionNumber: Integer
+fork

#lastPastProcessInChain : Process
Process

valueOf: anObject
  ^anObject myLastValue

newValue: aValue forHStates: aHStates
  ^aHStates addNewOrUpdateStateUsingGVNWithValue: anObject

  

+newValue:forHStates:
 
FullRecordProcess

newValue: aValue forHStates: anHStates
    HSnapshot atNow.
    ^anHStates addNewStateWithValue: aValue

Figure 5. Processes class diagram

Book>>borrower: aClient
”setter method that sets the borrower of a book”
borrower replacedBy: aClient atOffset: 3 of: self

From the getter method it is clear that class Process2

plays an active role to control the accessing and retrieving of
versioned information. By transferring control to instances
of process we can execute code in the past in one process
while executing code in other processes in the present.

Fig. 5 describes the class Process and the two methods
we extended it with:

• valueOf: returns the last value of the given object;
• newValue:forHStates: asks to the given instance of
HStates to update the last state or add a new state with
a given value (as described at end of Sec. 4.2.1).

By default, these methods result in the same behaviour
as standard Smalltalk, but via an indirection. This is the
overhead that is present as soon as fields are selected (see
Fig. 7(b)), wether the versioned information is used or not.

We can now implement other Process classes, as shown
in Fig. 5, with specific behaviour. The class PastProcess is
the process class that is used when executing code in a par-
ticular past state. It overrides the method valueOf: to fetch
the value from the HSnapshot object that will be detailed
next. Another example is FullRecordProcess, a process
that automatically snapshots just before any modification of

2 The class Process is an already defined class in Smalltalk, representing
the different processes executed in a Smalltalk image.



+myLastValue : self
+replacedBy:atOffset:of:
+replacedBy:atIndex:of:
+valueBeforeOrAtVersionNumber:
+selectFields
+selectFields: 
+deselectFields
+defaultFieldsToSelect : Array
+defaultFieldsToPropagate : Array

 
Object

+myLastValue
+replacedBy:atOffset:of:
+replacedBy:atIndex:of:
+valueBeforeOrAtVersionNumber:
+addNewStateWithValue:
+addNewOrUpdateStateUsingGVNWithValue:

#propagated : boolean
#chainedArrays : Array

HStates
0..#fields

replacedBy: aNewValue atOffset: anInteger of: anObject
^anObject instVarAt: anInteger put: aNewValue

replacedBy: aNewValue atIndex: anInteger of: anObject
^anObject basicAt: anInteger put: aNewValue

valueBeforeOrAtVersionNumber: anInteger
^self

replacedBy: aNewValue atOffset: anInterger of: anObject 
        ^Processor activeProcess newValue: aNewValue forHStates: self
replacedBy: aNewValue atIndex: anInterger of: anObject 
        ^Processor activeProcess newValue: aNewValue forHStates: self
valueBeforeOrAtVersionNumber: anInteger
       ^self searchInChainedArraysBeforeOrAt: anInteger

Figure 6. Object and states class diagram

a field (meaning that absolutely every change is captured
even when the user does not snapshot explicitly).

The indirection through the Process classes allow us to
change the semantics of reading and writing of fields. This
is actually done in close interaction with the class HStates.
A versioned field contains an instance of the class HStates.
This class contains four important methods:

• myLastValue returns the last value contained in the
chained arrays data structure that keeps all snapshotted
values and was discussed in Sec. 4.2.2;

• replacedBy:atOffset:of: is called when this in-
stance of HStates will be replaced by a new value at a
given offset3 of a given object. Depending on the current
process, it adds a new couple (version number, value) in
the chained arrays or it updates the last value;

• replacedBy:atIndex:of: is the same as the previous
one but for a given index of a given object;

• valueBeforeOrAtVersionNumber: returns the value
contained in the chained arrays associated with the high-
est version number before or equal to the given version
number.

Now that we have introduced the Process and HStates
classes and show how they collaborate to read current or past
fields by going through the appropriate process class, it is
time to look at the writing of fields. When selecting fields

3 The offset of a field is the order place of this field in the object. For
instance, the borrower of a Book instance being the third field, its offset
is 3.

the setter method will not directly set the value of a field, but
instead it sends the message replacedBy:atOffset:of:
to the object in the field. When this field is selected, then the
object will actually be an instance of HStates and the value
is saved. When the field is not selected, the field contains
the actual object itself that needs to be replaced. To be
transparent, we extend the Smalltalk root class Object with
the same interface than the one used by HStates, as shown
in Fig. 6. These implementations do the following:

• myLastValue returns itself;
• replacedBy:atOffset:of: puts itself at the given off-

set of the given object;
• replacedBy:atIndex:of: puts itself at the given index

of the given object;
• valueBeforeOrAtVersionNumber: returns itself.

As mentioned before we refrained from doing these mod-
ifications to the source code because it would be slower and
the developer would then be exposed to the internal work-
ings of our system when seeing the rewritten code. We also
did not want to modify the virtual machine because that
would be significantly more difficult and a user would need
to use our modified virtual machine. Therefore we chose to
directly manipulate bytecodes to implement our algorithm.
We decided to use Smalltalk because we could use the ex-
cellent ByteSurgeon tool [Denker et al. 2005] and had better
reflection support.

We could have implemented our approach in statically
typed languages like Java or C# as well. We believe that the
results would be comparable to the Smalltalk implementa-
tion, but more difficult to achieve.

4.3 Language Integration
The previous sections explain the concepts of our model and
how we made it efficient to store the data. This section shows
how this data can be used effectively by integrating it in an
object-oriented language.

As discussed before, the developer can select what fields
become versioned, take snapshots, and browse the saved
state. For these three basic operations, we give the developer
three primitives:

1. selectFields selects all fields of the receiver to be in
the next snapshot (essentially versioning the complete
object);

2. HSnapshot atNow takes a new snapshot and returns it;

3. execute: aBlock, sent to a snapshot, permits to exe-
cute the specified code block at the time when the snap-
shot was taken.

These primitives are actually an embedded domain spe-
cific language. Implementation-wise we just had to add
a method selectFields to the Object root class of



Smalltalk and create a Snapshot class to turn snapshots into
first-class objects.

The following subsections give a number of examples to
show HistOOry in action.

4.3.1 Example of Basic Usage
This example shows how we can track the changes to a par-
ticular object, namely a Squeak/Pharo package. The example
code first finds the package object named Kernel, makes it a
versioned object, changes its name to Test, takes a snapshot,
and renames it once more to NewKernel. We then print the
current name of the package on the transcript, which shows
NewKernel, as expected. Then, we do the same, but execute
it in the context of the saved snapshot. This time the tran-
script prints Test, again as expected.

|package s|

package := PackageInfo named: 'Kernel'.
”Gets the package named 'Kernel'”

package selectFields. ”Selects this object”

package packageName: 'Test'. ”Renames the package”

s := HSnapshot atNow. ”Takes a snapshot”

package packageName: 'NewKernel'.
”Renames the package again”

Transcript show: package packageName.
”Prints 'NewKernel' ”

s execute:
[Transcript show: package packageName].
”Prints 'Test' ”

There are several interesting things in this example.

• The class PackageInfo is one of the system classes core
to the Squeak/Pharo Smalltalk language, and not one of
our own classes. Yet, it is versioned simply by sending
it the selectFields message. This code illustrates that
the original implementation of an object (or its class)
does not need to be changed. Behind the scenes, our
bytecode rewriting tool takes care of instrumenting the
code to keep track of all changes to the fields of this
object and puts in place our data structures.

• When an ephemeral object is versioned, it is exactly the
same object and can be continued to be used exactly like
any other object. The reason is that we do not change the
object itself but update its class, which ensures that there
is no difference except for the fact that its state is saved
when snapshots are taken.

• The developer is responsible for taking snapshots. By
default, the system will not save anything. It is the role
of the developer to determine which states are important.

• Code can be executed in the context of a snapshot by
using the execute: message and passing the code to be
executed in a block.

• Ephemeral objects and versioned objects can live to-
gether. In our example, the object Transcript is
ephemeral while the package object is versioned. This is
possible because versioned fields return the saved value
at the time of the snapshot while ephemeral fields return
their present value.

4.3.2 Selection Protocol
Up until this point we have primarily talked about how
to make individual fields versioned, and just mentioned
that when an object is versioned, its fields are versioned.
In practice however it is important to give the developer
good control over what fields of what objects are versioned,
and this cannot be done with a single message like the
selectFields used above.

In fact there is a more refined protocol to let de-
velopers decide what is versioned, consisting of
three methods: selectFields, selectFields: and
defaultFieldsToSelect.

The selectFields message by default versions all
fields in the object. However, a developer can con-
trol this default behavior by overriding the method
defaultFieldsToSelect and indicating what fields are
selected when the message selectFields is sent. This
method overriding is a practical way for establish-
ing the default choices for what gets saved. Method
defaultFieldsToSelect is implemented in Object, the
root class, and returns all fields of the receiver object. The
fields are collected by using reflection and it is therefore not
needed to override this method on each class that just wants
to indicate that it too has fields to include.

If a developer wants to deviate from the default, the mes-
sage selectFields: can also be used. It takes as argument
the fields that need to be versioned, regardless of what is
specified in method defaultFieldsToSelect.

In our Smalltalk implementation, we added methods to
existing classes (for example the three selection protocol
methods to the root class Object). The object versioning
is nicely integrated in the language, resulting in a small
embedded domain-specific language. Moreover we imple-
mented our language extension using class extensions4 (also
called open classes [Millstein and Chambers 1999]). Other
languages could use their particular language features to
integrate a versioning model, for example through library
calls, method annotations, AOP-style inter-type declara-
tions [Kiczales et al. 2001], macros, etc.

4 A class extension is a method that is defined in a module, but whose class
is defined in another module.



4.3.3 Propagation
The previous section talked about selecting individual fields.
Of course what happens a lot is that a field itself contains an
object that you also want to be versioned.

Take for example the class Set. This class has two fields:
array (the basic collection that stores the actual elements in
the set) and tally (a number that indicates the position of
the last element in the array). When the array is full, a new
larger array replaces it (in which the old values are copied).
To make a Set instance, as a whole, versioned, we can send
it the message selectFields. The result is that both fields
are versioned and, therefore, changes to these fields will be
saved when taking snapshots. However, because the array
field is itself an object and that object was not versioned, we
will not actually be able to revert to the previous contents of
the set instance but merely remember changes to the pointer
itself.

To solve this problem, we can make the array variable
itself versioned, for example by doing the following:

|s|
s := Set new.
s add: 1; add: 2.
s selectFields.
(s instVarNamed: #array) selectFields.
1 to: 100 do: [:each | s add: each. (s instVarNamed: #array)

selectFields].

We need to send the message selectedFields after
each insertion. This ensures that if the array has grown,
the new ephemeral array that resulted from the growth is
immediately versioned.

Because this code is tedious too write and frequently
needed we support it directly through either a message or
a class extension. The message propagateFields: can
be used to make the selection propagate, meaning that the
previous code snippet can be rewritten as follows:

|s|
s := Set new.
s add: 1; add: 2.
s selectFields.
s propagateFields: {#array}.
1 to: 100 do: [:each | s add: each].

As an alternative the method
defaultFieldsToPropagate can be implemented on
a class to indicate what fields should be propagated when
the object is versioned. In our example, we could add it to
the class Set as follows:

Set>>defaultFieldsToPropagate

ˆNHArray with: #array

When an instance of the Set class is versioned, all values
of the field array will also be selected for versioning.

The class NHArray is a “non HistOOrizable” implemen-
tation of the class Array that we defined in the HistOOry
package. No state of its instances will be saved. This class

therefore avoids unnecessary indirections to the Process
classes hierarchy.

With the method defaultFieldsToPropagate added
to class Set, our code snippet can be written as follows:

|s|
s := Set new.
s add: 1; add: 2.
s selectFields.
1 to: 100 do: [:each | s add: each].

We stress that this solution is again transparent for the
original code: the original code is not changed, but it is
extended with one method residing in another package.

4.3.4 HPastObject
Suppose that we have made an application versioned and
have taken a number of snapshots. Then, we want to send
messages to an old version of some object. In the very first
example, we have seen that this can be done by sending
the message execute: to the snapshot, passing the code to
execute in that snapshot as an argument. The following code
example illustrates this.

...
((s execute: [aSet size]) < aSet size)

&& (s execute: [aSet includes: 0])
...

To make it easier to repeatedly send messages to a previ-
ous state of a single object, we have provided a proxy-based
mechanism that redirects messages sent to it to the old state
of the object. The next code snippet shows this mechanism
in action.

...
oldSet := HPastObject on: aSet during: aSnapshot.
oldSet size < aSet size

&& oldSet includes: 0
...

The implementation of the class HPastObject is pretty
straightforward. It captures all messages sent to it by over-
riding the method doesNotUnderstand: [Ducasse 1999].
In that method it sends the message to the object to the snap-
shot provided when an instance of the class was created.

5. Implementing Versioned Applications
Using HistOOry

Sec. 2 listed a number of applications that, explicitly or
implicitly, use object versioning. This section shows how
they can be implemented using HistOOry.

5.1 Capturing Stateful Execution Traces
In this example, we show how we can very easily build an
execution tracer that is stateful: it saves the messages that
are sent, including the state of the receiver before and after
sending the message. Therefore, trace analyzers can not only
find patterns on the order and nesting of the messages sent,



but they can also take the state of the receiver into account
(for example to find all messages that have side effects).

In Smalltalk, execution traces can be captured fairly eas-
ily by using method wrappers [Brant et al. 1998] to instru-
ment code. The instrumented method will be replaced by a
method wrapper where we can add hooks to trace the ac-
tivation of methods. The following example shows the key
part of the implementation of this technique. The wrapped
method first calls traceEntryIn:on:, then it calls the orig-
inal method, and finally it calls traceExitOf:on:5.

MyWrapper>>run: aSelector with: arguments in: aReceiver
|answer|
self traceEntryIn: aSelector on: aReceiver. ”before call”
answer := aReceiver withArgs:arguments executeMethod:

originalMethod.
self traceExitOf: aSelector on: aReceiver. ”after call”
ˆanswer

The previous implementation only captures the messages
being sent. It is easy to extend it to save the state of the
receiver before and after sending the message, turning it into
a stateful sequence tracer: we make the receiver versioned
by sending it the message selectFields.

MyWrapper>>run: aSelector with: arguments in: aReceiver
|answer|
aReceiver selectFields.
self traceEntryIn: aSelector on: aReceiver at: HSnapshot atNow.
answer := aReceiver

withArgs:arguments executeMethod: originalMethod.
self traceExitOf: aSelector on: aReceiver at: HSnapshot atNow.
ˆanswer

Note that repeatedly sending the message selectFields
is harmless. For each method call, both states of the receiver
are saved by the snapshots. These snapshots will then be
used to retrieve the state of the receiver at a given time.

This section showed how, with a minimum of effort, an
execution trace was extended with support for saving the
states of the objects.

5.2 Checked Postconditions
Checking postconditions frequently requires one to compare
the states of the receiver before the method is being executed
with the final state at the end of the method execution. We
show how we have extended Smalltalk with support for
checked postconditions by using HistOOry.

The developers needed a mechanism to make it possi-
ble to specify the postconditions they would like to have
checked. We opted to do this by extending the Smalltalk
class BlockContext, the class implementing delayed code
evaluation, because it is available in all Smalltalk implemen-
tations. An alternative could have been to add the postcon-
dition using method annotations, but these only exist in a
number of Smalltalk implementations, with different inter-
nal implementations.

5 traceEntryIn:on: and traceExitOf:on: are auxiliary methods that
store information about the messages that were sent, such as the timestamp.

An example of using the postconditions in Smalltalk
is given below. It adds a postcondition for the method
swap:with: of class SequenceableCollection (one of
the abstract classes in the Collection hierarchy). The post-
condition verifies that the elements were indeed swapped by
comparing the identities of the objects:

SequenceableCollection>>swap: oneIndex with: anotherIndex
”Move the element at oneIndex to anotherIndex, and vice--

versa.”
[

| element |
element := self at: oneIndex.
self at: oneIndex put: (self at: anotherIndex).
self at: anotherIndex put: element

] postCond: [:old |
(old at: oneIndex) == (self at: anotherIndex) and: [
(old at: anotherIndex) == (self at: oneIndex)]]

The original code of the method is put into a Smalltalk
block (the square brackets). In the rest of the explanation,
we will call this block the method block. The postcondition
is specified as another block that is given as argument to
the postCond: message sent to the first block. We will
call this the postcondition block. The postcondition block
takes one argument (old) that represents the state of the
system before the execution of the method body. In the
postcondition block, messages are sent to old to retrieve
values from before the execution of the method block and
to self to retrieve the current values.

We implement the method postCond: aBlock as an
extension of the BlockContext class. The block that
receives the message is the method block. The argument
block is the postcondition block. It makes the receiver
versioned, takes a snapshot, creates a HPastObject object
to make it easy to refer to the past states, and then executes
the method block and the postcondition block.

BlockContext>>postCond: aBlock

| old snapshot value |
self receiver selectFields.
”makes the receiver versioned”

snapshot := HSnapshot atNow.
”snapshot before executing the method block”

”create a HPastObject”
old := HPastObject

on: self receiver during: snapshot.

”execute the method block”
value := self value.

”execute postcondition block”
self assert: (aBlock value: old).

”return the result of the method block”
ˆvalue



This implementation is fairly straightforward. The only
tweak is the creation of a HPastObject object for the re-
ceiver in the old state and passing it to the postcondition
block. The result is that the code in the postcondition can
directly send messages to the “old” receiver, as explained in
Sec. 4.3.4.

Sometimes postconditions need access to other objects,
for example to arguments of the method. We therefore added
a second method, postCond: aBlock withObjects:
aSetOfObjects, where the objects for which we need to
access past states are passed explicitly. The difference with
the previous postcondition is that the argument passed can-
not be a HPastObject, because that only makes it easy to
send messages to a single object in the past. Instead the ar-
gument is a regular snapshot.

BlockContext>>postCond: aBlock withObjects: aSetOfObjects
| snapshot value |
”make arguments versioned”
aSetOfObjects do: [ :each | each selectFields].
snapshot := HSnapshot atNow.
value := self value.
self assert: (aBlock value: snapshot).
ˆ value

We can use this more elaborated postcondition mecha-
nism to check that after adding a collection to another col-
lection the size of the argument is unchanged while the size
of the new collection is the sum of the initial collection sizes.

OrderedCollection>>addAll: aCollection
[

self addAllLast: aCollection
]

postCond: [:snapshot |
”the size of aCollection must not change”
(snapshot execute: [aCollection size] = aCollection size)

and: [

”self size = oldSelf size + aCollection size”
((snapshot execute: [self size]) + aCollection size) = self

size. ]
]
withObjects: {self. aCollection}.

ˆ aCollection

We showed in this section how we can add checked post-
conditions to Smalltalk by extending the BlockContext
class with two methods.

5.3 Planar Point Location
To illustrate how HistOOry can simplify the implementa-
tion of complex data structures, we implemented a random
treap [Seidel and Aragon 1996], a randomized binary search
tree. This structure is a mix of a tree and a heap where each
node has a key and a random priority. At each insertion, node
rotations ensure that constraints on the keys and the priori-
ties hold. We implement this structure using several classes:
a class RandomTreap that inherits from a class Treap and
has as its root an instance of a class TreapNode. The in-

stances of TreapNode have the attributes key, priority,
left and right. The two last attributes contain either the
default value nil or an instance of TreapNode.

To turn this structure into a versioned random treap, we
simply extend the classes Treap and TreapNode with the
following methods:

Treap>>defaultFieldsToPropagate
ˆNHArray with: #root

TreapNode>>defaultFieldsToPropagate
ˆNHArray with: #left with: #right

The following code is placed in a class
PlanarPointLocation, that implements a solution to
the planar point location problem. It stores a set of points.
In the construction of the point location data structure, each
point of the set is swept by the sweepline, its outgoing
segments are added to the treap, the incoming ones are
removed and a snapshot is taken and associated with this
point.

PlanarPointLocation>>constructRTreap
| linkedInfo |
rtreap := RandomTreap new.
rtreap selectFields.
self allPointsDo:

[ :aPoint |
aPoint incomingSegmentsDo: [ :segment | rtreap deleteKey:

segment ].
aPoint outcomingSegmentsDo: [ :segment | rtreap putKey:

segment ].
aPoint associatedSnapshot: (HSnapshot atNow) ]

When a location query of a point p is considered, the slab
containing p is determined, searching the rightmost point to
the left of p in the points of the plane. This point l is the
left point of the slab. Then the snapshot associated with l is
used to browse the treap at the time where only the relevant
segments were present. The treap is then used normally,
inside the block executed through the snapshot, to locate the
point.

PlanarPointLocation>>searchPoint: aPPLPoint
| thePoint linkedInfo |
thePoint := self lastPointBefore: aPPLPoint.
ˆthePoint snapshot execute: [rtreap keyEqualOrJustBefore:

aPPLPoint]

This section again showed how a data structure can be
made persistent without much difficulty and without chang-
ing the existing implementation. The next section will look
at the efficiency of the approach.

6. Measurements
This section presents performance benchmarks for
HistOOry. It first gives general measurements about
the time and space needed for a number of synthetic
examples. Then, it shows measurements for the stateful
tracer and the checked postconditions discussed in Sec.
5. All tests were performed on an iMac 2.4 GHz Intel



Core 2 Duo with 2 gigabytes of RAM and using an
empty image of Squeak/Pharo for developers (version
0.1-101166dev08.11.6).

6.1 General Measurements
We start with some general measurements: the space re-
quired and the time required to save and retrieve states.

6.1.1 Space Required
To show the size required by HistOOry, we create an object
with a single field (with integer 0 as initial value) and we
make this field versioned. We then increment the field and
take a snapshot, and repeat this.

Fig. 7(a) shows the size taken by the data structure in the
field after each update. The size grows in steps: every jump
corresponds to the creation of a new array in the chain of
arrays that store the actual states when the last array is full.

6.1.2 Execution Times for Saving States
We want to show the overhead in execution time when
HistOOry is saving states. Therefore, we measure the aver-
age time required to update a field with an integer value. Fig.
7(b) shows four different benchmark results for this case, de-
pending on how HistOOry is being used:

1. The code is executed in a pure Squeak/Pharo image,
without HistOOry.

2. The code is executed in a Squeak/Pharo image where the
methods are instrumented by HistOOry, but nothing is
selected and no snapshots are taken.

3. The field is selected, but no snapshots are taken.

4. The field is selected and snapshots are taken after each
update.

When observing the plot, we first of all note that the
execution time plots are nearly flat. This indicates that, as
expected, the execution cost when using HistOOry does not
depend on the number of states that are saved (the cost is
always a constant overhead).

The overhead cost in the first case, where HistOOry is
not used at all, is zero. This is normal because in that case
no instrumentation is done and the code runs without any
modification. This is an important point, because it shows
that you only pay for the features of HistOOry when you
need it.

Instrumenting a class (the second case) adds an overhead
of about a factor of 2 that must be paid by all instances
created from this class, whether their fields are selected or
not. As explained in Sec. 4.2.3, the reason for this cost is that
all methods of this class are instrumented to redirect reads
and writes of instance variables to the Process hierarchy.

Selecting a field (the third case) shows that the overhead
grows to a factor of about 5.6 and 6.7 when fields are se-
lected but no snapshots are taken.

An overhead between 6.7 and 7.3 is visible when a field
is selected and snapshots are taken.

Having an application run 7.3 times slower might seem
like a big price to pay. However this example is a synthetic
example where literally each operation results in an assign-
ment that needs to be stored. In practice this is often not the
case: not every single operation is an assignment (sending a
message, for example). Fig. 8, for example, shows the aver-
age execution times per insertion in a random treap, again
for a number of use cases:

1. Treap not instrumented.

2. Treap instrumented but none of its fields selected.

3. All fields of the treap selected, and no snapshots are
taken.

4. All fields selected, and snapshots taken after each inser-
tion.

5. All fields selected and snapshots taken after every change
(including for example the internal rebalancing happen-
ing in the treap)

The overall curves remain similar: they still show that for
this more complex data structure the cost is constant and
does not depend on the number of states being saved. More-
over we can see that the biggest execution time overhead is
now only about 2.3, which is much better than the 7.3 times
in the synthetic example.

6.1.3 Execution Times for Retrieving States
We show the cost to retrieve a saved state, depending on
the number of states that were saved. Therefore, we select
a field and update it a fixed number of times n, each time
followed by taking a snapshot. Then, we take the total time
to inspect all states saved by the snapshots and divide this
time by the number n. This gives us the average execution
time to access a single state. Fig. 9 shows the result, on a
logarithmic scale. The curve is logarithmic as expected (it is
the theoretical complexity of the algorithm), indicating that
our implementation is correct. Note that the peaks are again
the result of an allocation of a new array in the chained arrays
that keep the past states.

To show the importance of the introduction of the cache
described in Sec. 4.2.2 we performed an experiment with
a random treap in which we insert 1000 values and we
take a snapshot we call s. We insert a given number of
new values and after each insertion we take a snapshot.
Finally we take the time to retrieve the 1000 initial values
through the snapshot s. We did this experiment with and
without the cache. Fig. 10 shows the time as Y-coordinate
and the number of snapshots taken after s as X-coordinate).
The cache reduces the lookup time by a factor of 2 in this
example.
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Figure 7. (a) Numbers of update vs. total size of a field. (b)
Execution times when updating a field for four different usage
scenarios of HistOOry.
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Figure 10. Time with and without cache to retrieve 1000 values
in a versioned random treap from a snapshot s depending on the
number of snapshots taken after s.

6.2 Capturing Stateful Execution Traces
This benchmark shows the performance of our stateful ex-
ecution tracer. We let the tracer record the execution trace
for inserting a number of elements in a random treap data
structure (recording the entry and exit of all methods of the
three treap classes) and measure the execution time needed
to produce that trace. Dividing this number by the number
of elements that were added gives us the average time per
insertion. We do the experiment without any tracing, for a
stateless tracer that does not keep any state, and for a state-
ful tracer that uses HistOOry as described in Sec. 5.1.

Fig. 11 shows the results. Transforming a stateless tracer
into a stateful tracer only adds a slowdown of a factor of 1.3.
Not only was it very easy to upgrade the stateless tracer, the
performance is also feasible for the added functionality.

6.3 Postconditions
In Sec. 5 we showed how we added checked postconditions
to Smalltalk, and gave examples on two methods. This sec-
tion shows how much this addition costs for each of these
methods.

6.3.1 swap:with:
The method swap:with:, defined on class
SequenceableCollection, swaps the place of the
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Figure 11. Execution times for adding elements in a treap with-
out tracing, with a stateless tracer, and with a stateful tracer.

elements on the indices given as argument. For our exper-
iment, we create collections of different sizes (ranging in
size from 1 to 800 elements). We add either simple integers
or array objects of 100 elements pointing to nil). We then
perform 10,000 swaps at random indices and take the total
time. Dividing this total time by 10,000 gives us the average
execution time per swap.

We perform the experiment with three implementations
of the swap:with: method: the original Smalltalk method,
the method with a checked postcondition based on HistOOry
and shown in Sec. 5.2, and the method where we add a
checked postcondition based on doing a copy of the receiver
before executing the swap, as follows:

SequenceableCollection>>swap: oneIndex with: anotherIndex
”Move the element at oneIndex to anotherIndex, and vice--

versa.”
| element old|
old := self copy. ”copying the receiver before doing the

swap”
element := self at: oneIndex.
self at: oneIndex put: (self at: anotherIndex).
self at: anotherIndex put: element.
self assert: ((old at: oneIndex) = (self at: anotherIndex) and: [

(old at: anotherIndex) = (self at: oneIndex)])

Fig. 12 shows the results. It shows that an implementation
that uses copies has an execution time that grows linearly
with the size of the collection (and quickly, depending on
the size of the data structure). The implementations based
on HistOOry have a constant cost that does depend neither
on the number of elements in the collection nor on the
kind of the elements (integers or arrays). HistOOry does
not take full copies of the receiver. When the first swap is
performed, the fields are selected and a snapshot is taken.
For all the following snapshots, the collection is already
instrumented and everything is in place. Only a snapshot
must be taken, which boils down to incrementing the global
version number, before executing the normal body of the
method.

The copying approach is faster than the HistOOry based
approach for smaller collection sizes. The reason is simple:
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Figure 12. Postconditions (swap:with:): Number of elements in
collection vs. time per swap.

the performance of a copy depends on the number of ele-
ments in the collection. It is obvious that the performance is
better for small collections. HistOOry offers a low constant
cost for any number (and any kind) of elements in the col-
lection but this constant cost is higher than the simple copy
operation for small collections.

6.3.2 addAll:
The method addAll:, defined on class
OrderedCollection, adds all elements in the argu-
ment collection to the receiver collection. We compare two
different scenarios. In the first scenario, we add a collection
of a given number of elements to an empty receiver collec-
tion (and divide by the size of the argument collection to get
an average per single insertion). In the second scenario, we
add collections containing a single element, again starting
from an empty collection.

We compare the original implementation with an imple-
mentation that has postconditions based on HistOOry as
shown in Sec. 5.2 and with an implementation that copies
the receiver state before executing the body of the method,
as follows:

OrderedCollection>>addAll: aCollection
”Add each element of aCollection at my end. Answer

aCollection.”
|ans dcs dcc|
dcs := self copy.
dcc := aCollection copy.

ans := self addAllLast: aCollection.
self assert: ((dcc size = (aCollection size)) and: [

((dcs size) + aCollection size) = self size])
ˆans

Fig. 13 shows the results for both applications, with
adding the larger collections shown in Fig. 13(a) and adding
collections of size 1 shown in Fig. 13(b). The results are sim-
ilar to the previous experiment: we again see linear execution



0 200 400 600 800
# insertions

0

0.005

0.01

0.015

0.02

Ti
m

e 
in

 m
s 

pe
r i

ns
er

te
d 

el
em

en
t

Original addAll: (without post condition)
Copy
HistOOry

(a)

0 200 400 600 800
# insertions

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Ti
m

e 
in

 m
s 

pe
r i

ns
er

te
d 

el
em

en
t Original addAll: (without post condition)

Copy
HistOOry

(b)

Figure 13. Postconditions (addAll:): (a) Numbers of elements
in collection to add vs. time (ms) per insertion. (b) Number of
elements added one by one vs. time (ms) per insertion.
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Figure 14. Planar Point Location

time for the implementations based on copying and bounded
execution time for the HistOOry-based implementations.

6.4 Planar Point Location
Fig. 14 shows the time used to search the polygon in which
a randomized point is. This curve is logarithmic as expected.

7. Related work
We have split the related work in three subsection. We first
discuss approaches that are directly related to ours, then
look at applications that use object versioning internally and

therefore have an implicit versioning system built-in, and
finally look at object versioning in Java.

7.1 Similar work
In [Marquez 2007], Marquez describes an orthogonal object
versioning system in Java, providing long-lived versioned
objects. Unfortunately, only an overview of the system is
given in the 4 page paper, without details about the language
design . Neither the actual data structures used nor the per-
formance of the system are given. The project seems to have
stopped in 2005, and it is no longer available, so we were not
able to inspect their approach ourselves and properly com-
pare it to our work. In contrast, we tried to be very clear
about what we did and how, and provide detailed numbers
so that future approaches can properly compare their results
with ours.

In [Bertino et al. 1998], Bertino et al. extend the Object
Database Management Systems model with the notion of
time. Their model is formally defined and complete. But no
details about its implementation are given. The conclusion
section mentions in one sentence that B+-trees are used,
without more detail. Again we cannot do a proper compari-
son of this approach with ours.

ObjectFlow [Lienhard et al. 2009] is a tool to follow
the flow of an object through a system, from its creation
to its destruction. Amongst other things it keeps track of
assignments made to its fields. This means that all states of
these fields are kept, which is similar to what HistOOry does.

While this sounds similar, ObjectFlow also differs on sev-
eral key points from HistOOry because its goals are differ-
ent. First of all ObjectFlow fixes the scope of what objects
are versioned to the process (thread): any object manipulated
in the process is versioned. Secondly it always records all
state changes. Note that both of these design choices make
perfect sense in the context of ObjectFlow, so their approach
does not offer options to change this. Because we have a gen-
eral approach we have options to decide what fields to save
and when. Thirdly ObjectFlow is implemented in the virtual
machine while HistOOry is implemented in the source code.
Both of these choices have advantages and disadvantages.
Implementing a very complex data structure in the lower-
level languages used in the virtual machine is not trivial.
On the other hand it would probably be even faster than our
current implementation. Finally HistOOry and ObjectFlow
share that all states are kept in the object space, permitting
an automatic garbage collection of no-longer-used states.

7.2 Applications Using Object Versioning
One category of applications that frequently use object ver-
sioning are advanced debuggers [Pothier et al. 2007, Lien-
hard et al. 2008, Feldman and Brown 1989, Boothe 2000]
and model checking tools that are based on execution, such
as Java Pathfinder [Visser et al. 2000]. The Omniscient De-
bugger, for example, executes a program and remembers
the states objects went through to give the possibility to



the developer to return at any point in the execution’s past.
Other information is also saved during execution, such as the
method calls and the method return values.

The difference between these applications and HistOOry
is that HistOOry was from the ground up designed to be a
language extension to make it easy to remember and use
object states, paired with an infrastructure to do so effi-
ciently. The applications all have their own implementation
that is application-specific and only meant to keep those
states needed by the application.

HistOOry can therefore be seen as a general layer that any
of these applications could have used.

This would have eased the implementation of these ap-
proaches, because developing a full fledged performant ob-
ject persistence mechanism is not trivial. On the other hand,
HistOOry is a general-prupose object versioning framework
and some applications will still benefit from having specific
structures and algorithms optimized for their particular us-
age.

Finally, software transactional memories [Shavit and
Touitou 1995] can be also considered to be an application
of object versioning. Transactional memories can be decom-
posed in three parts:

1. When a transaction begins, the states of interesting ob-
jects are saved;

2. During the transaction, modifications of states performed
in the transaction are not visible outside the transaction;

3. A transaction is finished when either the code of the
transaction executed without problem and the modifica-
tions are commited, or because an error occurred and a
rollback of the saved states occurs.

From this breakdown it becomes clear that HistOOry is
currently not really suited to support software transactional
memories. One reason is that the visibility of the states in
HistOOry is global. The second is that a rollback is not di-
rectly supported. While such functionality could be built on
top of HistOOry we think that the performance and ease-of-
use will suffer. A modified version of HistOOry that retains
the data structure but allows to keep local changes would be
interesting. We feel that it would enhance software transac-
tional memories with the ability to have internal fine-grained
data-driven rollback where the past states of unaffected vari-
ables can be retained over executions while other ones are
recomputed.

7.3 Object Versioning in Java
We mentioned that this paper is the second in our research
on efficient object versioning. The first paper presented the
first-ever published implementation of the fat node method
of [Driscoll et al. 1986]. It relied on AspectJ to instrument
changes to fields. It scaled very well, due to the properties of
the chosen algorithm, but also had a big overhead and was
not very robust.

This paper revisits the algorithms and data structures,
adding the cache to substantially improve performance (as
shown by Fig. 10 in Sec. 6.1.3). We also did a complete
reimplementation in Smalltalk, where we directly manipu-
late the byte codes to have less overhead than relying on an
aspect-oriented programming framework. This implementa-
tion is also more robust and practical. The Java version, for
example, uses one global variable to determine whether or
not we are browsing or recording old states. If old states are
browsed in a thread, any update of a versioned object in any
thread raises an error. Our new implementation (described
in Sec. 4.2.3) uses the Smalltalk processes to save or browse
state local to a thread. Last but not least we have fully inte-
grated HistOOry in a language, and used it in a number of
applications.

8. Future Work
HistOOry implements a partial versioning model that only
provides viewing of stored states. We are currently working
on a fully versioning model that removes this limitation
and makes it possible to create new states in the past by
modifying saved states. Algorithms for this use advanced
data structures and pose several interesting implementation
challenges. Like in this work, we want to have a completely
object-oriented transparent solution that is efficient and well-
integrated.

We also want to make some more algorithmic improve-
ments. One possible improvement is to introduce the pos-
sibility of supporting multiple “local” snapshots instead of
having only one global snapshot. This has the potential to
reduce the number of states that need to be saved.

Last but not least we will develop more applications that
use HistOOry, for example a stateful debugger with built-in
query capabilities that can take advantage of the past states.

9. Conclusion
This paper introduced HistOOry, an efficient in-memory ob-
ject versioning system. The efficiency is due to our object-
oriented implementation of, and changes to, an efficient data
structure to keep past states. From the practical point of view,
we have shown how existing applications can be made ob-
ject versioned without much effort, simply by either sending
them a message or using a class extension to override a de-
fault method. Regardless of this choice, fine-grained control
is offered on what fields of an object are versioned, and when
exactly the states are saved. Therefore, our solution is gen-
eral enough to support applications that need object version-
ing but have different needs. Debuggers might want to save
every single state change of a lot of objects, while other ap-
plications like an execution tracer might want to only record
certain states for certain messages being sent. Even though it
is general, our solution only requires three basic primitives,
making it easy to learn and use. Properly integrating it in the
language, like we did in Smalltalk, makes it easy to trans-



form existing applications that do not use object versioning
into ones that have such support. We have shown how to
do this by extending the Smalltalk language with checked
postconditions, by extending an execution tracer to become
stateful, and by implementing a planar point location pro-
gram. Benchmarks show that the overhead for storing states
is constant, and does not scale with the number of states that
need to be stored. It is our hope that by presenting HistOOry
applications that currently use ad-hoc and inefficient object
versioning implementations will be able to take advantage of
our approach.
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