
Evolution Persistence For Objects

Frédéric Pluquet
∗

Université Libre de Bruxelles
Bruxelles, Belgique

fpluquet@ulb.ac.be

Roel Wuyts
†

Université Libre de Bruxelles
Bruxelles, Belgique

roel.wuyts@ulb.ac.be

ABSTRACT
In literature the word “persistence” has different meanings.
It is either used to indicate the storage of the state of objects,
or in the context of versioning of objects. Firstly this paper
establish the separation of these two concepts, and explain
the goals of both. The second kind of persistence appears
very interesting to us. In the rest of the paper we try to
find all types of applications that, written in a language
that would include a persistent system, benefits of the new
features. For the moment the idea of a new kind of debugger
is promising to exploit all resources of this mechanism. We
finish this article with some ideas for the continuation of this
research.

1. INTRODUCTION
The notion of persistence is used in several places in existing
literature, and seems to be a well understood notion. How-
ever, when investigating in some detail we see that different
semantics are attached to this word in different contexts.
One usage of the word persistence is used to describe the
storing of objects, and we therefore dubbed it storable per-
sistence. The second usage of the word deals with the ability
to deal with versioning of objects, and we named it version-
ing persistence. Before the rest of the paper looks in detail at
versioning persistence, and what we can do with it, we first
have a more detailed look at these two forms of persistence.

• storable persistence. The first usage of persistence
indicates the possibility to store objects and to reload
them afterwards, and is the most frequent occurrence.
This kind of persistence is used to save the state of
objects (i.e. all values of attributes of objects at a
given instant) in a physical medium (files, databases,
...). The majority of programs that use storable per-
sistence somehow serialises the objects to some rep-

∗http://www.ulb.ac.be/di/fpluquet/
†http://homepages.ulb.ac.be/∼rowuyts/

resentation (proprietary formats, XML descriptions,
database storage, ...). The goal is to make sure that
the data in the objects is not lost. Typical is also that
the data to be stored is big, and cannot be contained in
memory. For example, an insurance company will keep
all the data of their clients stored in some databases,
and applications that need data will load it from this
database, modify it, and write it back. Java Data Ob-
jects (JDO) [1] and Smalltalk Images are examples of
applications using storable persistence.

• versioning persistence. The second usage of persis-
tence indicates an ability to revert to previous versions
of objects, where a version of an object is simply a
saved state of an object, possibly including metadata
like timestamps or even version numbers. This means
that versions of objects can be saved, and that versions
can be retrieved easily later on. Versioning persistence
is used in a variety of areas (computational geometry,
text and file editing, ...) [2]. The research in this area
is, up until now, primarily done in the field of algorith-
mic.

The goals of this article are twofold. The first one is the
separation of the two concepts of persistence that we iden-
tified. The second one is to study versioning persistence in
some more detail, and introducing possible applications.

2. STORABLE PERSISTENCE
If we search for the word “persistence” in literature, nine
out of ten times we will find documents that talk about
storing objects in a physical system. The purpose of storable
persistence in an object oriented context is very simple : save
and load objects when necessary.

This simple principle gives rise to very hard problems re-
garding efficient reading and writing of objects. Therefore
lots of different approaches exist for this problem: either
using proprietary file formats, using different database sys-
tems (relational, relational object oriented, object oriented
or temporal object oriented database, too name a few), cre-
ating optimized data structures to store data efficiently in
databases, or using techniques such as the object faulting [3,
4, 5] or an automatic prefetching in queries to database[6]
to minimize loading of objects from a store . Describing all
of these techniques is beyond the scope of this paper.

The applications using storable persistence can be divided

http://www.ulb.ac.be/di/fpluquet/
http://homepages.ulb.ac.be/~rowuyts/


into two kinds :

1. The first kind adds this persistence to keep ephemeral
objects into a backup system. A copy of live objects
on physical support is there to restore the system, or
a part of the system, after a crash. The data manip-
ulated by these applications are often very important
and a loss of data could mean a big loss of revenue.

2. The second kind uses storable persistence to store data
that is too big too fit in main memory into a secondary
memory. In this case, swaps between the secondary
and main memory are necessary.

3. VERSIONING PERSISTENCE
The purpose of versioning persistence is simply to keep ver-
sions of objects, such that particular versions of objects can
be manipulated on demand.

Several data structures were developed to deal with version-
ing persistence. These data structures constrain what can be
done with older versions of objects to optimize space and/or
execution times. There are three well known techniques in
existence today: partial, total and confluent persistence [2,
7]. Note that describing the algorithms for these different
kinds of versioning persistence is out of the scope of this
paper.

• Partial persistence An object is partially persistent
if all versions can be accessed but only the newest ver-
sion can be modified (i.e. create a new version from
the newest version) [2].

• Total persistence Unlike partial persistence, total
persistence allows one to read and modify any version
of an object [2]. Modifying an old version A, which
already had a newer version B, creates a new version
C. The version B is still accessible, and therefore the
version A will then have two versions following it (B
and C ). Figure 5 shows an object with two concurrent
versions.

We define branches of a version to be the different
versions emerged from one version. We furthermore
define concurrent versions to be the versions contained
in different branches emerged from a same version. It
is important to understand that in a totally persistent
context zero, one or more versions can exist after each
version.

• Confluent persistence Confluent persistence is like
total persistence, but adds one more feature : the ca-
pacity to merge two concurrent versions of an object.
A merge of two versions results in a single new version.
This type of persistence was introduced by Amos Fiat
and Haim Kaplan [7].

We like to stress that although they have different goals and
usage, storable and versioning persistence are not incompat-
ible. They can work together : storable persistence can offer
means of storage to store the big number of versions needed
to be kept by versioning persistence.

Object life
Back to history
Access to 
another object

Legend

Merge

Figure 1: Legend of symbols used in graphs

a

bcd

Figure 2: Introspective Persistence: querying past
versions of an object

4. CATEGORIZING VERSIONING PERSIS-
TENCE USAGES

Versioning persistence allows one to retrieve and manipulate
previous versions of objects. As described in the previous
section, different algorithms were devised, with partial and
total persistence offering less functionality than confluent
persistence. From the rest of the paper we assume to be
using versioning persistence with a confluent versioning sys-
tem. This choice is motivated by the applications we see for
this type of persistence, which we detail in the next section.

This section categorises the basic ways versioning persis-
tence can be used, either for introspection, or for reversion.

Note that throughout this section we illustrate these differ-
ent forms of persistence with a number of figures. Time on
all of these figures flows from left to right. The legend is
described in Figure 1.

4.1 Introspection
Using versioning persistence for introspection allows a par-
ticular version of an object to query previous versions of this
object. We see two kinds of these queries that can be useful:
queries on the past of a single object and queries on the past
of a number of objects.

The basic query of introspective persistence is the following :
Which are the previous values for a given variable of a given
object ? It is illustrated in Figure 2.

When considering multiple objects, we can relate the state
of different objects and pose a number of different queries:

1. A first query relates the value of a variable of one ob-
ject with the value of a variable of a second object at
the same time (see Figure 3). In the same vain it can
be interesting to know the state of an object before the
last change of an another object.

2. A second question is similar to the basic query, but in
case of an object with concurrent versions. The ques-
tion stills the same, but an interesting case is the fol-
lowing : extreme versions of an object, i.e. the last ver-
sions of each branches, can be inspected by another ob-



a

a'

b

c

d

e

object1

object2

Figure 3: Comparing objects at different versions

object1

a'object2

b

e

a

d

c

Figure 4: An object compares two concurrent ver-
sions of an other object

ject. This object can extract information about these
two versions, for example to calculate metrics (see the
illustration in Figure 4).

Note that we have not explicitly included information about
time in the queries. This could be included in the same way
as including versions, and we could then pose queries lie:
What was the state of this variable ten minutes ago? or
How many minutes have passed between the last change of
state of this variable?.

4.2 Reversion
Using versioning persistence for reversion allows one to re-
vert to a previous version of an object, and start modifying
it (hence branching versions) like in Fig. 5, or to merge
different versions (Fig. 6).

5. VERSIONING PERSISTENCE AT WORK
This section investigates a number applications we could
built if we would have an object oriented language that sup-
ported versioning persistence. It therefore motivates our
research for such language, and indicates the systems we
would like to built to validate versioning persistence.

It is very important to remark that the applications should
be able to use versioning persistence without implementing
it : the proposed layer will be fully-tested and optimised.

a

c

b

Figure 5: Working on a past state and creating a
new history of the same object

a

c

b

d

e

Figure 6: Two versions of an object are merged to
give a new version

Developers can therefore work without worrying about per-
sistence and include it when needed during development in
an easy and sure way.

A first type of applications that can benefit from versioning
persistence are applications where the history of objects is
used as an add-on of the main application to improve its
functionality. For example, text editors (including all in-
tegrated development environments (IDEs) and so on) use
the history of text editions to offer the Undo functionality.
This kind of application could be built without the Undo
aspect, which could be added later on by falling back to the
versioning persistence.

We can even go one step further, and have applications that
can revert to the history of an object, and branch of new
modifications of this previous state. This is typically not
possible in most current applications: most of the time, an
application that allows one to undo changes or go back-
wards in time, results in the old branch being replaced by
the newest one. As with the first type of applications, using
versioning persistence could add the possibility of working
with graphs of objects to applications that currently have
no or limited undo facilities.

A second kind of applications are those that need to com-
pare versions of objects. We can find in this category all file
servers (like CVS, SVN, ...) where the goal is to save differ-
ent versions of a same object and to offer the possibility to
compare two versions of the same object, merge branches,
etc. This is a straightforward of versioning persistence.

A third example are new generations of debuggers. A de-
bugger based on versioning persistence can compare states
of an object obtained by sending the same chain of mes-
sages on this object but with different parameters. The user
can then exploit information given by the debugger, inspect-
ing other states of this object, to take decisions about the
application of a message. We have already implemented a
first and very promising version of a debugger that provides
such functionality. It uses a logic programming language to
query execution trace information (as published in [8]), but
it could benefit from proper versioning persistence instead
of the ad hoc deep copying of objects that is used now.

A fourth application is found after the reading of an article
written by Mark Johnson [9] : the versioning of objects to
maintain serialization compatibility with JavaBeans. The
goal of this system is to maintain compatibility between ob-
jects and versions of a program : objects written for version
x must be interpreted in a version y, older than x. The
proposed solution is to modify the responsible class of the



serialization of objects to accept “compatible” changes (like
adding fields, changing the privacy of a field, . . . ). With a
versioning persistent language, another solution is have as
many versions of a reader document class than versions of
the application. When the objects must be read the first step
is to determine the version used to write this. The second
step is to use the compatible version the reader document
class to correctly read the object.

Last but not least we plan to use versioning persistence in
our research on logic meta programming. The logic meta
programming language we use, Soul, is a logic program-
ming language living in symbiosis with its host language,
Smalltalk. More specifically it allows to execute object ori-
ented code during logic inference [10]. What is currently
not very well handled is the mismatch between side-effects
in the object oriented code and backtracking. When using
versioning persistence, we could map backtracking during
logic execution to reverting to previous versions of objects
in the object oriented part.

6. CONCLUSION AND FUTURE WORK
This paper introduces storage and versioning persistence,
two kinds of persistence that are currently amalgamated in
literature. It then looks in more detail at versioning per-
sistence, differentiating between introspective usage (that
allows queries on the past states of objects) and reversion
usage (that allows to revert to a previous version of an ob-
ject and create branches). Language support (or at least a
proper framework) can be used in a number of different ap-
plications. We enumerate some very straightforward appli-
cations (undo functionality and CVS-like repositories), and
some more novel ones (advanced debuggers and new logic
meta programming languages).

The future work is obviously to validate the ideas put for-
ward by this paper. Therefore we are working on an im-
plementation of versioning persistence in an object oriented
language. The goals of this implementation are multiple :
experiment with the cost of a memory-intensive mechanism
like persistence in an object oriented language, study the
possibilities of queries, and implement several techniques to
store versions of objects. Let’s get to work!

7. REFERENCES
[1] David Jordan and Craig Russell. Java Data Objects.

O’Reilly Media, Inc., 2003.

[2] James R. Driscoll, Neil Sarnak, and Daniel D. Sleator.
Making data structures persistent. Journal of
Computer and System Sciences, pages 86–124, 1986.

[3] Antony L. Hosking and J. Eliot B. Moss. Towards
compile-time optimizations for persistence. In Alan
Dearle, Gail M. Shaw, and Stanley B. Zdonik, editors,
Implementing Persistent Object Bases, Principles and
Practice, Proceedings of the Fourth International
Workshop on Persistent Objects, 23-27 September
1990, Martha’s Vineyard, MA, USA, pages 17–27.
Morgan Kaufmann, 1990.

[4] Antony L. Hosking, Eric W. Brown, and J. Eliot B.
Moss. Update logging for persistent programming
languages: A comparative performance evaluation. In

Rakesh Agrawal, Seán Baker, and David A. Bell,
editors, 19th International Conference on Very Large
Data Bases, August 24-27, 1993, Dublin, Ireland,
Proceedings, pages 429–440. Morgan Kaufmann, 1993.

[5] J. Eliot, B. Moss, and A. L. Hosking. Expressing
object residency optimizations using pointer type
annotations. In M. Atkinson, D. Maier, and
V. Benzaken, editors, Persistent Object Systems, pages
3–15. Springer, Berlin, Heidelberg, 1994.

[6] Ali Ibrahim and William R. Cook. Automatic
prefetching by traversal profiling in object persistence
architectures. In Proceedings 20th European
Conference on Object-Oriented Programming
(ECOOP 06), pages ??–??, 2006.

[7] Amos Fiat and Haim Kaplan. Making data structures
confluently persistent. In J. Algorithms, pages 16–58,
2003.

[8] Stéphane Ducasse, Tudor Gı̂rba, and Roel Wuyts.
Object-oriented legacy system trace-based logic
testing. In Proceedings 10th European Conference on
Software Maintenance and Reengineering (CSMR
2006), pages ??–?? IEEE Computer Society Press,
2006.

[9] Mark Johnson. It’s in the contract ! object versions
for javabeans, March 1998.
http://www.javaworld.com/javaworld/jw-03-1998/jw-
03-beans.html.

[10] Kris Gybels, Roel Wuyts, Stéphane Ducasse, and
Maja D’Hondt. Inter-language reflection - a
conceptual model and its implementation. Journal of
Computer Languages, Systems and Structures,
32(2-3):109–124, jul 2006.
http://prog.vub.ac.be/Publications/2005/vub-prog-tr-
05-13.pdf.


	Introduction
	Storable persistence
	Versioning persistence 
	Categorizing versioning persistence usages
	Introspection
	Reversion

	Versioning Persistence at Work
	Conclusion and Future Work
	References 

